Timotheos Angelidis and Stavros Degiannakis
The aim is to evaluate the performance of symmetric and asymmetric ARCH models in forecasting both the one‐day‐ahead Value‐at‐Risk (VaR) and the realized intra‐day volatility of…
Abstract
Purpose
The aim is to evaluate the performance of symmetric and asymmetric ARCH models in forecasting both the one‐day‐ahead Value‐at‐Risk (VaR) and the realized intra‐day volatility of two equity indices in the Athens Stock Exchange.
Design/methodology/approach
Two volatility specifications are estimated, the symmetric generalized autoregressive conditional heteroscedasticity (GARCH) and the asymmetric APARCH processes. The data set consisted of daily closing prices of the General and the Bank indices from 25 April 1994 to 19 December 2003 and their intra day quotation data from 8 May 2002 to 19 December 2003.
Findings
Under the VaR framework, the most appropriate method for the Bank index is the symmetric model with normally distributed innovations, while the asymmetric model with asymmetric conditional distribution applies for the General index. On the other hand, the asymmetric model tracks closer the one‐step‐ahead intra‐day realized volatility with conditional normally distributed innovations for the Bank index but with asymmetric and leptokurtic distributed innovations for the General index.
Originality/value
As concerns the Greek stock market, there are adequate methods in predicting market risk but it does not seem to be a specific model that is the most accurate for all the forecasting tasks.
Details
Keywords
Timotheos Angelidis and Stavros Degiannakis
Aims to investigate the accuracy of parametric, nonparametric, and semiparametric methods in predicting the one‐day‐ahead value‐at‐risk (VaR) measure in three types of markets…
Abstract
Purpose
Aims to investigate the accuracy of parametric, nonparametric, and semiparametric methods in predicting the one‐day‐ahead value‐at‐risk (VaR) measure in three types of markets (stock exchanges, commodities, and exchange rates), both for long and short trading positions.
Design/methodology/approach
The risk management techniques are designed to capture the main characteristics of asset returns, such as leptokurtosis and asymmetric distribution, volatility clustering, asymmetric relationship between stock returns and conditional variance, and power transformation of conditional variance.
Findings
Based on back‐testing measures and a loss function evaluation method, finds that the modeling of the main characteristics of asset returns produces the most accurate VaR forecasts. Especially for the high confidence levels, a risk manager must employ different volatility techniques in order to forecast accurately the VaR for the two trading positions.
Practical implications
Different models achieve accurate VaR forecasts for long and short trading positions, indicating to portfolio managers the significance of modeling separately the left and the right side of the distribution of returns.
Originality/value
The behavior of the risk management techniques is examined for both long and short VaR trading positions; to the best of one's knowledge, this is the first study that investigates the risk characteristics of three different financial markets simultaneously. Moreover, a two‐stage model selection is implemented in contrast with the most commonly used back‐testing procedures to identify a unique model. Finally, parametric, nonparametric, and semiparametric techniques are employed to investigate their performance in a unified environment.