Search results

1 – 10 of over 7000
Article
Publication date: 20 January 2021

Xueqing Zhao, Min Zhang and Junjun Zhang

Classifying the types of fabric defects in the textile industry requires a way to effectively detect. The traditional textile fabric defects detection method is human eyes, which…

Abstract

Purpose

Classifying the types of fabric defects in the textile industry requires a way to effectively detect. The traditional textile fabric defects detection method is human eyes, which performs very low efficiency and high cost. Therefore, how to improve the classification accuracy of textile fabric defects by using current artificial intelligence and to better meet the needs in the textile industry, the purpose of this article is to develop a method to improve the accuracy of textile fabric defects classification.

Design/methodology/approach

To improve the accuracy of textile fabric defects classification, an ensemble learning-based convolutional neural network (CNN) method in terms of textile fabric defects classification (short for ECTFDC) on an enhanced TILDA database is used. ECTFDC first adopts ensemble learning-based model to classify five types of fabric defects from TILDA. Subsequently, ECTFDC extracts features of fabric defects via an ensemble multiple convolutional neural network model and obtains parameters by using transfer learning method.

Findings

The authors applied ECTFDC on an enhanced TILDA database to improve the robustness and generalization ability of the proposed networks. Experimental results show that ECTFDC outperforms the other networks, the precision and recall rates are 97.8%, 97.68%, respectively.

Originality/value

The ensemble convolutional neural network textile fabric defect classification method in this paper can quickly and effectively classify textile fabric defect categories; it can reduce the production cost of textiles and it can alleviate the visual fatigue of inspectors working for a long time.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 October 2021

Liu-Qing Li, Yi-Tian Gao, Xin Yu, Gao-Fu Deng and Cui-Cui Ding

This paper aims to study the Gramian solutions and solitonic interactions of a (2 + 1)-dimensional Broer–Kaup–Kupershmidt (BKK) system, which models the nonlinear and dispersive…

Abstract

Purpose

This paper aims to study the Gramian solutions and solitonic interactions of a (2 + 1)-dimensional Broer–Kaup–Kupershmidt (BKK) system, which models the nonlinear and dispersive long gravity waves traveling along two horizontal directions in the shallow water of uniform depth.

Design/methodology/approach

Pfaffian technique is used to construct the Gramian solutions of the (2 + 1)-dimensional BKK system. Asymptotic analysis is applied on the two-soliton solutions to study the interaction properties.

Findings

N-soliton solutions in the Gramian with a real function ζ(y) of the (2 + 1)-dimensional BKK system are constructed and proved, where N is a positive integer and y is the scaled space variable. Conditions of elastic and inelastic interactions between the two solitons are revealed asymptotically. For the three and four solitons, elastic, inelastic interactions and soliton resonances are discussed graphically. Effect of the wave numbers, initial phases and ζ(y) on the solitonic interactions is also studied.

Originality/value

Shallow water waves are studied for the applications in environmental engineering and hydraulic engineering. This paper studies the shallow water waves through the Gramian solutions of a (2 + 1)-dimensional BKK system and provides some phenomena that have not been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 24 January 2025

Liu Tianning, Xuesong Wang, Jinzhi Lu, Yao Tong and Yixiao Liu

This paper aims to propose a set of metamodels applicable to the architecture modeling of air traffic management systems|air traffic management system (ATMS) under the UAF…

Abstract

Purpose

This paper aims to propose a set of metamodels applicable to the architecture modeling of air traffic management systems|air traffic management system (ATMS) under the UAF methodology. The designing of metamodels also needs to meet modeling requirements for the introduction of new supersonic airliners into the ATMS.

Design/methodology/approach

In order to complete the designing of metamodels and the architecture modeling work in the case study, the GOPPRR method and the M0–M3 modeling framework are used in this paper. The design and modeling work carried out in this paper was done in the multi-architecture modeling tool Airdraw.

Findings

In this paper, the set of metamodels applicable to the architecture modeling of ATMS under the UAF methodology was proposed, which has a quantity of 102 object metamodels, eight point metamodels, 98 property metamodels, 41 relationship metamodels, 36 role metamodels and 65 graph metamodels.

Originality/value

The metamodel design proposed in this thesis allows for architectural modeling of the ATMS. Comparing with the traditional method of system engineering, which uses files to define, the model-based ATMS architecture can be updated for different ATMS and different aircraft types by modifying the parameters of the corresponding views or adding relevant supplementary model views in the architecture model library, which greatly improves the compatibility and modifiability of the system definition.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Book part
Publication date: 10 November 2016

Anthony Brown, Timothy M. Devinney and Mario Kafouros

It is well known that entrepreneurs possess human, political and social capital that allow them to be successful. While we know that each of these “capitals” possess value, we…

Abstract

It is well known that entrepreneurs possess human, political and social capital that allow them to be successful. While we know that each of these “capitals” possess value, we know much less about how they interact – for example, are they substitutes or complements? – and whether where the capital was acquired matters. The latter point is particularly Germaine to the issue of global entrepreneurship and the importance of returnee entrepreneurs for economic development. We provide an overview of this research to date and call for an agenda that concentrates more on the total value a portfolio of these capitals generates and on how that capital is acquired both at home and overseas.

Details

Global Entrepreneurship: Past, Present & Future
Type: Book
ISBN: 978-1-78635-483-9

Keywords

Article
Publication date: 10 September 2024

Tian Liu and Meng Shen

Redistributive policies aim to reduce income disparities and improve social equity. This study investigates whether redistributive effects that successfully diminish objective…

Abstract

Purpose

Redistributive policies aim to reduce income disparities and improve social equity. This study investigates whether redistributive effects that successfully diminish objective income inequality also effectively alter people’s perceptions of inequality.

Design/methodology/approach

Utilizing data from the 2018 China Household Income Survey (CHIP), comprising 56,167 individuals, this study applies ordered probability regression (Oprobit) and ordinary least squares (OLS) for analysis. To address potential biases in estimates, we employed the generalized propensity score matching (GPSM) method to estimate the treatment effect of transfer income on perceptions of inequality.

Findings

The results indicate that while China’s redistribution policies effectively reduce income disparities, they do not improve perceptions of inequality. Individuals exhibit biased attitudes toward redistributive policies. Specifically, perceptions of inequality are insensitive to the overall redistributive effect; the relationship is negative among the poor but positive among the rich. This contradictory pattern may be attributed to perceived income losses among the rich and gains among the poor.

Social implications

The findings have important implications for policy development. Redistribution policies should not only aim to mitigate income disparities but also address and improve people’s perceptions of inequality.

Originality/value

Existing literature has largely overlooked the impact of redistribution on perceived income inequality. This study represents an early effort to explore whether redistributive policies that reduce income inequality also influence people’s perceptions of inequality.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Article
Publication date: 7 June 2023

Na Liu

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves…

60

Abstract

Purpose

This paper aims to study the breather, lump-kink and interaction solutions of a (3 + 1)-dimensional generalized shallow water waves (GSWW) equation, which describes water waves propagating in the ocean or is used for simulating weather.

Design/methodology/approach

Hirota bilinear form and the direct method are used to construct breather and lump-kink solutions of the GSWW equation. The “rational-cosh-cos-type” test function is applied to obtain three kinds of interaction solutions.

Findings

The fusion and fission of the interaction solutions between a lump wave and a 1-kink soliton of the GSWW equation are studied. The dynamics of three kinds of interaction solutions between lump, kink and periodic waves are discussed graphically.

Originality/value

This paper studies the breather, lump-kink and interaction solutions of the GSWW equation by using various approaches and provides some phenomena that have not been studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 6 June 2023

Yunjia Wang and Qianli Zhang

It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of…

Abstract

Purpose

It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.

Design/methodology/approach

The paper builds up the model for the hydrothermal coupling calculation of permafrost using finite element software COMSOL to study how permafrost temperature field changes in the short term after subgrade filling, on which basis it proposes the method of calculation for the concave distortion of freezing front in the subgrade-covered area.

Findings

The results show that the freezing front below the subgrade center sinks due to the thermal effect of subgrade filling, which will trigger hydrothermal erosion in case of sufficient moisture inflows, leading to the thawing settlement or the cracking of the subgrade, etc. The heat output of soil will be hindered the most in case of July filling, in which case the sinking and the distortion of the freezing front is found to be the most severe, which the recovery of the permafrost temperature field, the slowest, constituting the most unfavorable working condition. The concave distortion of the freezing front in the subgrade area increases with the increase in temperature difference between the filler and ground surface, the subgrade height, the subgrade width and the volumetric thermal capacity of filler, while decreases with the increase of the thermal conductivity of filler. Therefore, the filler chose for engineering project shall be of small volumetric thermal capacity, low initial temperature and high thermal conductivity whenever possible.

Originality/value

The concave distortion of the freezing front under different working conditions at different times after filling can be calculated using the method proposed.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 3 February 2022

Nastaran Mosleh, Soheil Dariushi and Masoud Esfandeh

In this paper, continuous glass tow preg-reinforced acrylonitrile butadiene styrene (ABS) composites were fabricated by using a 3D printing method, and the purpose of this study…

Abstract

Purpose

In this paper, continuous glass tow preg-reinforced acrylonitrile butadiene styrene (ABS) composites were fabricated by using a 3D printing method, and the purpose of this study is the investigation of the fiber preimpregnation effect on the mechanical behavior of these composites. In addition, a simple theoretical approach (mixture law), which considers the elastic behavior of reinforced composites and a numerical simulation method based on finite element method (FEM), was used to predict the tensile stress–strain behavior of ABS/glass tow preg composites in the elastic region.

Design/methodology/approach

Different groups of preimpregnated glass tows with various ABS amounts (named 2%, 10%, 20% and 30%) were prepared by the solution impregnation method. Then, preimpregnated glass tows (prepregs or tow-pregs) were fed into the printer head along with the polymeric ABS filament to print the composites. The tensile, flexural and short beam tests were conducted to evaluate the mechanical properties of the printed composites.

Findings

The first result of using tow-pregs instead of dry tows in continuous fiber 3D printing is much easier printing, printability improvement and the possibility of printing layers with low thickness, which can further increase the mechanical properties. The mechanical test results showed all of the glass prepregs improve strength and modulus in the tensile, three-point bending and short beam tests compared with neat ABS specimens, but statistical analysis showed that ABS weight percentage in the prepregs had no significant effect on the mechanical strength of composites except for the tensile modulus. Samples containing 2%-prepreg (minimum ABS amount in the tow-pregs) showed a significant improvement in tensile modulus. In the simulation section, good agreement is obtained between the model predictions and experimental tensile results. The results show that an acceptable deviation (14%) exists between the experimental and predicted value of elastic modulus by the numerical model.

Originality/value

To the best of the authors’ knowledge, this is the first study showing the effects of ABS weight percentage in prepregs on the mechanical properties of 3D printed continuous fiber-reinforced composites and predicting the mechanical behavior of 3D printed composites by numerical simulation method.

Details

Rapid Prototyping Journal, vol. 28 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 December 2024

Xiangbin Liu, Fandi Meng, Ruiping Liu, Junlin Kou, Zeyang Zhang, Jianrong Feng, Li Liu and Fuhui Wang

The marine environment presents a great challenge to the anticorrosion properties of organic coatings applied on equipment. Since the compactness of coatings is critical in marine…

Abstract

Purpose

The marine environment presents a great challenge to the anticorrosion properties of organic coatings applied on equipment. Since the compactness of coatings is critical in marine environments, a novel nepheline-epoxy resin (N-EP) composite was introduced into organic coatings to improve the interfacial compatibility between the pigments and the binder. The purpose of this study is to evaluate the effectiveness of the N-EP composite in enhancing the corrosion resistance of the coatings in marine conditions.

Design/methodology/approach

These composite particles were prepared via the mechanical ball milling method at thermofield-assisted, leading to chemical bonding between inorganic nepheline and epoxy resin, the agglomeration of particles was avoided by this method. Fourier transform infrared spectroscopy, transmission electron microscope, particle size distribution, sedimentation and thermogravimetric-differential thermal analysis were used to verify the feasibility of thermal field-assisted mechanochemistry for achieving a direct reaction between epoxy resin and nepheline powder, as well as to determine the optimal reaction conditions. Additionally, water absorption tests, Electrochemical impedance spectroscopy and scanning electron microscope were conducted to assess the anticorrosive properties of the modified nepheline coatings.

Findings

The results further indicated that N-EP improved the barrier performance and mechanical properties of the coating. For example, after modified, the tensile strength of coating had increased from 41.96 ± 0.05–63.14 ± 0.05 MPa. This can be attributed to the less defective N-EP/binder interface and the uniform dispersion of N-EP in the coating. The optimal preparation conditions (500 r/min of ball grinding speed and 6 h of ball grinding time) for the composites were also studied for a superior corrosion resistance of the coating.

Originality/value

Thermofield-assisted mechanochemistry enables direct reactions between epoxy resin and nepheline powder, enhancing the dispersion stability and interfacial compatibility of N-EP. This modification improves coating compactness, reduces porosity and enhances corrosion resistance by strengthening the labyrinth effect on water diffusion.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 7000