Search results

1 – 4 of 4
Article
Publication date: 26 May 2022

Mohammad Qasim Shaikh, Thomas A. Berfield and Sundar V. Atre

The purpose of this paper is to investigate a simulation solution for estimating the residual stresses developed in metal fused filament fabrication (MF3) printed parts…

Abstract

Purpose

The purpose of this paper is to investigate a simulation solution for estimating the residual stresses developed in metal fused filament fabrication (MF3) printed parts. Additionally, to verify these estimates, a coupled experimental–computational approach using the crack-compliance method was investigated in this study.

Design/methodology/approach

In this study, a previously validated thermomechanical process simulation was used to estimate the residual stresses developed in the MF3 printing process. Metal-filled polymer filament with a solids loading of 59 Vol.% Ti-6Al-4V was studied. For experimental validation of simulation predictions, the MF3 printed green parts were slitted incrementally and the corresponding strains were measured locally using strain gauges. The developed strain was modeled in finite-element-based structural simulations to estimate a compliance matrix that was combined with strain gauge measurements to calculate the residual stresses. Finally, the simulation results were compared with the experimental findings.

Findings

The simulation predictions were corroborated by the experimental results. Both results showed the same distribution pattern, that is, tensile stresses at the outer zone and compressive stresses in the interior. In the experiments, the residual stresses varied between 1.02 MPa (tension) and −2.28 MPa (compression), whereas the simulations were predicted between 1.37 MPa (tension) and −1.39 MPa (compression). Overall, there was a good quantitative agreement between the process simulation predictions and the experimental measurements, although there were some discrepancies. It was concluded that the thermomechanical process simulation was able to predict the residual stresses developed in MF3 printed parts. This validation enables the printing process simulation to be used for optimizing the part design and printing parameters to minimize the residual stresses.

Originality/value

The applicability of thermomechanical process simulation to predict residual stresses in MF3 printing is demonstrated. Additionally, a coupled experimental–computational approach using the crack-compliance method was used to experimentally determine residual stresses in the three-dimensional printed part to validate the simulation predictions. Moreover, this paper presents a methodology that can be used to predict and measure residual stresses in other additive manufacturing processes, in general, though MF3 was used as demonstrator in this work.

Article
Publication date: 9 October 2024

Bart Raeymaekers and Thomas Berfield

The ability to use laser powder bed fusion (LPBF) to print parts with tailored surface topography could reduce the need for costly post-processing. However, characterizing the…

Abstract

Purpose

The ability to use laser powder bed fusion (LPBF) to print parts with tailored surface topography could reduce the need for costly post-processing. However, characterizing the as-built surface topography as a function of process parameters is crucial to establishing linkages between process parameters and surface topography and is currently not well understood. The purpose of this study is to measure the effect of different LPBF process parameters on the as-built surface topography of Inconel 718 parts.

Design/methodology/approach

Inconel 718 truncheon specimens with different process parameters, including single- and double contour laser pass, laser power, laser scan speed, build orientation and characterize their as-built surface topography using deterministic and areal surface topography parameters are printed. The effect of both individual process parameters, as well as their interactions, on the as-built surface topography are evaluated and linked to the underlying physics, informed by surface topography data.

Findings

Deterministic surface topography parameters are more suitable than areal surface topography parameters to characterize the distinct features of the as-built surfaces that result from LPBF. The as-built surface topography is strongly dependent on the built orientation and is dominated by the staircase effect for shallow orientations and partially fused metal powder particles for steep orientations. Laser power and laser scan speed have a combined effect on the as-built surface topography, even when maintaining constant laser energy density.

Originality/value

This work addresses two knowledge gaps. (i) It introduces deterministic instead of areal surface topography parameters to unambiguously characterize the as-built LPBF surfaces. (ii) It provides a methodical study of the as-built surface topography as a function of individual LPBF process parameters and their interaction effects.

Details

Rapid Prototyping Journal, vol. 31 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 August 2019

Niknam Momenzadeh, Hadi Miyanaji, Daniel Allen Porter and Thomas Austin Berfield

This study aims to investigate the material extrusion additive manufacturing (MEAM) deposition parameters for creating viable 3-D printed polyvinylidene fluoride (PVDF) structures…

Abstract

Purpose

This study aims to investigate the material extrusion additive manufacturing (MEAM) deposition parameters for creating viable 3-D printed polyvinylidene fluoride (PVDF) structures with a balanced mix of mechanical and electrical properties.

Design/methodology/approach

Different combinations of deposition conditions are tested, and the influence of these parameters on the final dimensional accuracy, semi-crystalline phase microstructure and effective mechanical strength of MEAM homopolymer PVDF printed parts is experimentally assessed. Considering printed part integrity, appearance, print time and dimensional accuracy, MEAM parameters for PVDF are suggested.

Findings

A range of viable printing parameters for MEAM fabricated PVDF Kynar 740 objects of different heights and in-plane length dimensions was determined. For PVDF structures printed under the suggested conditions, the mechanical response and the microstructure development related to Piezoelectric response are reported.

Originality/value

This research first reports on a range of parameters that have been confirmed to facilitate effective MEAM printing of 3-D PVDF objects, presents effects of the individual parameters and gives the mechanical and microstructure properties of PVDF structures fabricated under the suggested deposition conditions.

Article
Publication date: 27 September 2021

Michele Ciotti, Giampaolo Campana and Mattia Mele

This paper aims to present a survey concerning the accuracy of thermoplastic polymeric parts fabricated by additive manufacturing (AM). Based on the scientific literature, the aim…

Abstract

Purpose

This paper aims to present a survey concerning the accuracy of thermoplastic polymeric parts fabricated by additive manufacturing (AM). Based on the scientific literature, the aim is to provide an updated map of trends and gaps in this relevant research field. Several technologies and investigation methods are examined, thus giving an overview and analysis of the growing body of research.

Design/methodology/approach

Permutations of keywords, which concern materials, technologies and the accuracy of thermoplastic polymeric parts fabricated by AM, are used for a systematic search in peer-review databases. The selected articles are screened and ranked to identify those that are more relevant. A bibliometric analysis is performed based on investigated materials and applied technologies of published papers. Finally, each paper is categorised and discussed by considering the implemented research methods.

Findings

The interest in the accuracy of additively manufactured thermoplastics is increasing. The principal sources of inaccuracies are those shrinkages occurring during part solidification. The analysis of the research methods shows a predominance of empirical approaches. Due to the experimental context, those achievements have consequently limited applicability. Analytical and numerical models, which generally require huge computational costs when applied to complex products, are also numerous and are investigated in detail. Several articles deal with artificial intelligence tools and are gaining more and more attention.

Originality/value

The cross-technology survey on the accuracy issue highlights the common critical aspects of thermoplastics transformed by AM. An updated map of the recent research literature is achieved. The analysis shows the advantages and limitations of different research methods in this field, providing an overview of research trends and gaps.

Details

Rapid Prototyping Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 4 of 4