Search results

1 – 5 of 5
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 27 September 2021

Wanting Zhao, Tantan Shao, Xiaolong Chen, Shusen Cao and Lijun Chen

Fluorine materials have received the keen attention of many researchers because of their water repellency and low surface free energy. The purpose of this paper is to prepare…

236

Abstract

Purpose

Fluorine materials have received the keen attention of many researchers because of their water repellency and low surface free energy. The purpose of this paper is to prepare self-crosslinking fluorocarbon polyacrylate latexes containing different fluorocarbon chain lengths by semi-continuous seeded emulsion polymerization technology.

Design/methodology/approach

Methyl methacrylate (MMA), butyl acrylate (BA), hydroxypropyl methacrylate (HPMA) and fluorine-containing monomers were used as main monomers. The fluorine-containing monomers included hexafluorobutyl methacrylate (HFMA), dodecafluoroheptyl methacrylate (DFMA) and trifluorooctyl methacrylate (TFMA). Potassium persulfate (KPS) was used as thermal decomposition initiator, non-ionic surfactant alkyl alcohol polyoxyethylene (25) ether (DNS-2500) and anionic surfactant sodium dodecylbenzene sulfonate (SDBS) as mixed emulsifier.

Findings

Through optimizing the reaction conditions, the uniform and stable latex is gained. The polymer of structure was characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and contact angle (CA) were tested on latex films. The particle size and distribution range of emulsion were tested with nano particle size analyzer. After comprehensively comparing the latexes and films prepared by HFMA, DFMA and TFMA, the performance of DFMA monomer modified is better.

Originality/value

The self-crosslinking acrylic emulsion is prepared via semi-continuous seeded emulsion polymerization, which methyl methacrylate (MMA), butyl acrylate (BA), hydroxypropyl methacrylate (HPMA) and fluorine-containing monomers were used as main monomers. The fluorine-containing monomers were composed of hexafluorobutyl methacrylate (HFMA), dodecafluoroheptyl methacrylate (DFMA) and trifluorooctyl methacrylate (TFMA). Potassium persulfate (KPS) was used as thermal decomposition initiator, non-ionic surfactant alkyl alcohol polyoxyethylene (25) ether (DNS-2500) and anionic surfactant sodium dodecylbenzene sulfonate (SDBS) as mixed emulsifier. There are two main innovations. One is that the self-crosslinking acrylic emulsion is prepared successfully. The other is that the effects of monomers containing different fluorocarbon chain lengths on polyacrylate, such as monomer conversion rate, coagulation rate, mechanical stability, chemical stability, emulsion particle size and storage stability, are studied in detail.

Details

Pigment & Resin Technology, vol. 51 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 8 April 2019

Yilu Gong, Tantan Shao, Xiuming Wang, Xin Zhang, Zhijuan Sun and Lijun Chen

Fluorine and silicon materials have received the keen attention of many researchers because of their water repellency and low surface free energy. The purpose this study was to…

120

Abstract

Purpose

Fluorine and silicon materials have received the keen attention of many researchers because of their water repellency and low surface free energy. The purpose this study was to prepare vinyl acetate (VAc)-vinyl ester of neodecanoic acid (VeoVa 10) copolymer latex modified with fluorine and silicone monomer, which is emulsified with the novel surfactants of disodium laureth sulfosuccinate (MES) and octylphenol polyoxyethylene ether (OP-10).

Design/methodology/approach

A series of modified latices containing fluorine-silicon have been prepared by semi-continuous seeded emulsion polymerisation of mixed monomers of VAc, VeoVa10, hexafluorobutylmethacrylate (HFMA) and vinyltriethoxysilane (VTES) and emulsified by novel surfactants of MES and OP-10.

Findings

The optimum conditions for preparing the modified latex is as follows: the amount of the surfactant was 4.0 Wt.% and the mass ratio of the anionic and nonionic surfactant was 3:1; the dosage of initiator was 0.4 Wt.% and the mass ratio of the main monomer was 3:1; and the amounts of VTES and HFMA were 2.0 and 6.0 Wt.%, respectively. In comparison with the conventional latex, the hydrophobicity of latex film was improved further.

Originality/value

The modified p (VAC-VeoVa) latex is prepared via semi-continuous seeded emulsion polymerisation, which is emulsified with the novel mixed surfactants of MES and OP-10. There are two main innovations. One is that the novel p (VAC-VeoVa) latex containing fluorine-silicon is prepared successfully. The other is that the emulsifier is composed of the novel mixed surfactants of MES and OP-10.

Access Restricted. View access options
Article
Publication date: 7 June 2020

Yilu Gong, Tantan Shao and Lijun Chen

Fluorine materials have received the keen attention of many researchers because of their water repellency and low surface free energy. The purpose of this paper is to prepare…

219

Abstract

Purpose

Fluorine materials have received the keen attention of many researchers because of their water repellency and low surface free energy. The purpose of this paper is to prepare fluorine-containing soap-free acrylic emulsion, which sodium allyoxypropyl hydroxypropyl sulfonate (COPS-1) and anionic emulsifier sodium a-alkenyl sulfonate (a-AOS) were combined as polymerizable emulsifier, and undecylenic acid (UA) and dodecafluoroheptyl methacrylate(DFMA) were introduced as functional monomer.

Design/methodology/approach

The fluorinated polyacrylate emulsion was successfully prepared by semi-continuous seed emulsion polymerization, wherein the main monomers were methyl methacrylate (MMA) and butyl methacrylate (BA), and the initiator was potassium persulfate (KPS). Sodium alloxypropyl sulfonate (COPS-1) and an anionic emulsifier sodium a-alkenyl sulfonate (a-AOS) were compounded as a polymerizable emulsifier. Besides, undecylenic acid (UA) and dodecafluoroheptyl methacrylate (DFMA) were introduced as the functional monomers.

Findings

The optimum recipe of preparing the modified latex is as follows: the amount of emulsifier was 4%, the ratio of emulsifier (COPS-1: AOS) was 3: 1, and the content of initiator was 0.6%. In this case, the conversion rate of acrylic polymer emulsion was high and the polymerization stability was good. When the amount of monomer UA was 2% and the amount of DFMA was 4%, the overall performance of the emulsion was the best.

Originality/value

The fluorine-containing soap-free acrylic emulsion is prepared via semi-continuous seeded emulsion polymerisation, which sodium allyoxypropyl hydroxypropyl sulfonate (COPS-1) and anionic emulsifier sodium a-alkenyl sulfonate (a-AOS) were combined as polymerizable emulsifier, and undecylenic acid (UA) and dodecafluoroheptyl methacrylate (DFMA) were introduced as functional monomer. There are two main innovations. One is that the fluorine-containing soap-free acrylic emulsion is prepared successfully. The other is that the undecylenic acid is introduced as functional monomer.

Details

Pigment & Resin Technology, vol. 50 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Access Restricted. View access options
Article
Publication date: 4 November 2020

Tantan Shao, Xiaolong Chen and Lijun Chen

Silane cross-linkers have been used to strengthen the mechanical stabilities and friction resistance of plastic products. Therefore, the effect of silane cross-linkers on latex…

246

Abstract

Purpose

Silane cross-linkers have been used to strengthen the mechanical stabilities and friction resistance of plastic products. Therefore, the effect of silane cross-linkers on latex has been studied through preparing modified self-cross-linking long fluorocarbon polyacrylate latex. In this paper, nonionic surfactant alcohol ether glycoside (AEG1000) and anionic polymerizable surfactant 1-allyloxy-3-(4-nonylphenol)-2-propanol polyoxyethylene (10) ether ammonium sulfate (DNS-86) acted as mixed emulsifier and 3-(methacryloyloxy) propyltrimethoxysilane (KH-570) and bis (2-ethylhexyl) maleate (DOM) were used as functional monomers.

Design/methodology/approach

The modified acrylate polymer latex was synthesized through the semi-continuous seeded emulsion polymerization with methyl methacrylate (MMA), butyl acrylate (BA), dodecafluoroheptyl methacrylate (DFMA) and hydroxypropyl methacrylate (HPMA) as main monomers. Potassium persulfate (KPS) was applied to initiate polymerization reaction, nonionic surfactant AEG1000 and DNS-86 acted as emulsifier, KH-570 and DOM were used as functional monomers, respectively.

Findings

The optimum conditions of synthesizing the modified latex were the following. The mass ratio of monomers containing MMA, BA, DFMA, HPMA, KH-570 and DOM was 13.58:13.58:0.90:1.20:0.15:0.60, the usage of initiator KPS was 0.5% of the total weight of monomers and the amount of emulsifier was 7% of all monomers with AEG1000:DNS-86 = 1:1. The results indicated that the conversion of monomer was 99% and the coagulation was about 2.0%.

Originality/value

The resultant latex was modified silane cross-linker KH-570 and DOM, which positively affected the comprehensive properties of latex and its film. Apart from this, the novel mixed emulsifier was used to improve the size and distribution of latex particles and reduce environmental problems caused by the use of emulsifiers.

Access Restricted. View access options
Article
Publication date: 28 May 2024

Hung-Tai Tsou, Yu-Hsun Lin and Pui Yan Loo

Social live streaming services (SLSS) have infused gamification into interface design and feature applications. Firms adopt gamification mechanisms to win customer loyalty in the…

515

Abstract

Purpose

Social live streaming services (SLSS) have infused gamification into interface design and feature applications. Firms adopt gamification mechanisms to win customer loyalty in the live streaming and SLSS markets. Based on the mechanics-dynamics-aesthetics (MDA) framework and uses and gratifications 2.0 theory (UGT 2.0), this study aims to investigate the effects of game mechanics (mechanics) on enjoyment and user retention (aesthetics) through rewards and social interaction (dynamics) in the context of SLSS.

Design/methodology/approach

This study used an online survey via Google Forms, SurveyCake and social media platforms like Facebook, Instagram and Line to collect data from 232 SLSS users in Taiwan. Partial least squares structural equation modeling (PLS-SEM) was adopted to analyze the data.

Findings

The results validated the relationships between game mechanics and dynamic elements (rewards and social interaction) that triggered aesthetic elements (enjoyment feelings) among users. In addition, users experienced a sense of enjoyment that led to usage retention when using the gamified SLSS. Further, this study found enjoyment crucial for users to stay interactive with gamified services.

Originality/value

Driven by UGT 2.0, this study closed the gaps by integrating the MDA framework into the SLSS context and better understanding how game mechanics are connected to rewards and social interaction, leading to enjoyment and user retention when using SLSS. This study provides fresh insights into gamification-oriented SLSS practices. It offers significant theoretical and managerial implications and provides guidelines for SLSS platform operators on fostering user retention.

1 – 5 of 5
Per page
102050