Taiki Ogata, Ayanori Nagata, Zhifeng Huang, Takahiro Katayama, Masako Kanai-Pak, Jukai Maeda, Yasuko Kitajima, Mitsuhiro Nakamura, Kyoko Aida, Noriaki Kuwahara and Jun Ota
For self-training of nursing students, this paper developed a mannequin to simulate and measure the movement of a patient’s arms while nurses changed the patient’s clothes on a…
Abstract
Purpose
For self-training of nursing students, this paper developed a mannequin to simulate and measure the movement of a patient’s arms while nurses changed the patient’s clothes on a bed. In addition, using the mannequin the purpose of this paper is to determine the difference in the handling of a patient’s arms between nursing teachers and students.
Design/methodology/approach
The target patient was an old man with complete paralysis. Three-degrees-of-freedom (DOF) shoulder joints and one-DOF elbow joints were applied to the mannequin. The angles of all joints were measured using a potentiometer, and those angles were transmitted to a computer via Bluetooth.
Findings
In a preliminary experiment, the two nursing teachers confirmed that the mannequin arms simulated the motion of the arms of a paralyzed patient. In the experiment, two teachers and six students changed the clothes of the mannequin. The average joint angle of the left elbow and the moving frequency of the left elbow, right shoulder adduction/abduction and right shoulder internal/external rotation were lower in the case of teachers dressing the mannequin than when students were dressing it.
Originality/value
The proposed system can simulate a completely paralyzed patient that nursing students would normally be almost unable to train with. Additionally, the proposed approach can reveal differences between skilled and non-skilled people in the treatment of a patient’s body.
Takahiro Sato and Kota Watanabe
There are few reports that evolutional topology optimization methods are applied to the conductor geometry design problems. This paper aims to propose an evolutional topology…
Abstract
Purpose
There are few reports that evolutional topology optimization methods are applied to the conductor geometry design problems. This paper aims to propose an evolutional topology optimization method is applied to the conductor design problems of an on-chip inductor model.
Design/methodology/approach
This paper presents a topology optimization method for conductor shape designs. This method is based on the normalized Gaussian network-based evolutional on/off topology optimization method and the covariance matrix adaptation evolution strategy. As a target device, an on-chip planer inductor is used, and single- and multi-objective optimization problems are defined. These optimization problems are solved by the proposed method.
Findings
Through the single- and multi-objective optimizations of the on-chip inductor, it is shown that the conductor shapes of the inductor can be optimized based on the proposed methods.
Originality/value
The proposed topology optimization method is applicable to the conductor design problems in that the connectivity of the shapes is strongly required.