Asli Ogunc and Randall C. Campbell
Advances in Econometrics is a series of research volumes first published in 1982 by JAI Press. The authors present an update to the history of the Advances in Econometrics series…
Abstract
Advances in Econometrics is a series of research volumes first published in 1982 by JAI Press. The authors present an update to the history of the Advances in Econometrics series. The initial history, published in 2012 for the 30th Anniversary Volume, describes key events in the history of the series and provides information about key authors and contributors to Advances in Econometrics. The authors update the original history and discuss significant changes that have occurred since 2012. These changes include the addition of five new Senior Co-Editors, seven new AIE Fellows, an expansion of the AIE conferences throughout the United States and abroad, and the increase in the number of citations for the series from 7,473 in 2012 to over 25,000 by 2022.
Details
Keywords
Tae-Hwy Lee and Yang Yang
Bagging (bootstrap aggregating) is a smoothing method to improve predictive ability under the presence of parameter estimation uncertainty and model uncertainty. In Lee and Yang…
Abstract
Bagging (bootstrap aggregating) is a smoothing method to improve predictive ability under the presence of parameter estimation uncertainty and model uncertainty. In Lee and Yang (2006), we examined how (equal-weighted and BMA-weighted) bagging works for one-step-ahead binary prediction with an asymmetric cost function for time series, where we considered simple cases with particular choices of a linlin tick loss function and an algorithm to estimate a linear quantile regression model. In the present chapter, we examine how bagging predictors work with different aggregating (averaging) schemes, for multi-step forecast horizons, with a general class of tick loss functions, with different estimation algorithms, for nonlinear quantile regression models, and for different data frequencies. Bagging quantile predictors are constructed via (weighted) averaging over predictors trained on bootstrapped training samples, and bagging binary predictors are conducted via (majority) voting on predictors trained on the bootstrapped training samples. We find that median bagging and trimmed-mean bagging can alleviate the problem of extreme predictors from bootstrap samples and have better performance than equally weighted bagging predictors; that bagging works better at longer forecast horizons; that bagging works well with highly nonlinear quantile regression models (e.g., artificial neural network), and with general tick loss functions. We also find that the performance of bagging may be affected by using different quantile estimation algorithms (in small samples, even if the estimation is consistent) and by using different frequencies of time series data.
Jianghao Chu, Tae-Hwy Lee and Aman Ullah
In this chapter we consider the “Regularization of Derivative Expectation Operator” (Rodeo) of Lafferty and Wasserman (2008) and propose a modified Rodeo algorithm for…
Abstract
In this chapter we consider the “Regularization of Derivative Expectation Operator” (Rodeo) of Lafferty and Wasserman (2008) and propose a modified Rodeo algorithm for semiparametric single index models (SIMs) in big data environment with many regressors. The method assumes sparsity that many of the regressors are irrelevant. It uses a greedy algorithm, in that, to estimate the semiparametric SIM of Ichimura (1993), all coefficients of the regressors are initially set to start from near zero, then we test iteratively if the derivative of the regression function estimator with respect to each coefficient is significantly different from zero. The basic idea of the modified Rodeo algorithm for SIM (to be called SIM-Rodeo) is to view the local bandwidth selection as a variable selection scheme which amplifies the coefficients for relevant variables while keeping the coefficients of irrelevant variables relatively small or at the initial starting values near zero. For sparse semiparametric SIM, the SIM-Rodeo algorithm is shown to attain consistency in variable selection. In addition, the algorithm is fast to finish the greedy steps. We compare SIM-Rodeo with SIM-Lasso method in Zeng et al. (2012). Our simulation results demonstrate that the proposed SIM-Rodeo method is consistent for variable selection and show that it has smaller integrated mean squared errors (IMSE) than SIM-Lasso.
Details
Keywords
Tae-Hwy Lee, Shahnaz Parsaeian and Aman Ullah
Hashem Pesaran has made many seminal contributions, among others, in the time series econometrics estimation and forecasting under structural break, see Pesaran and Timmermann…
Abstract
Hashem Pesaran has made many seminal contributions, among others, in the time series econometrics estimation and forecasting under structural break, see Pesaran and Timmermann (2005, 2007), Pesaran, Pettenuzzo, and Timmermann (2006), and Pesaran, Pick, and Pranovich (2013). In this chapter, the authors focus on the estimation of regression parameters under multiple structural breaks with heteroskedasticity across regimes. The authors propose a combined estimator of regression parameters based on combining restricted estimator under the situation that there is no break in the parameters, with unrestricted estimator under the break. The operational optimal combination weight is between zero and one. The analytical finite sample risk is derived, and it is shown that the risk of the proposed combined estimator is lower than that of the unrestricted estimator under any break size and break points. Further, the authors show that the combined estimator outperforms over the unrestricted estimator in terms of the mean squared forecast errors. Properties of the estimator are also demonstrated in simulations. Finally, empirical illustrations for parameter estimators and forecasts are presented through macroeconomic and financial data sets.
Details
Keywords
Eric Hillebrand and Tae-Hwy Lee
We examine the Stein-rule shrinkage estimator for possible improvements in estimation and forecasting when there are many predictors in a linear time series model. We consider the…
Abstract
We examine the Stein-rule shrinkage estimator for possible improvements in estimation and forecasting when there are many predictors in a linear time series model. We consider the Stein-rule estimator of Hill and Judge (1987) that shrinks the unrestricted unbiased ordinary least squares (OLS) estimator toward a restricted biased principal component (PC) estimator. Since the Stein-rule estimator combines the OLS and PC estimators, it is a model-averaging estimator and produces a combined forecast. The conditions under which the improvement can be achieved depend on several unknown parameters that determine the degree of the Stein-rule shrinkage. We conduct Monte Carlo simulations to examine these parameter regions. The overall picture that emerges is that the Stein-rule shrinkage estimator can dominate both OLS and principal components estimators within an intermediate range of the signal-to-noise ratio. If the signal-to-noise ratio is low, the PC estimator is superior. If the signal-to-noise ratio is high, the OLS estimator is superior. In out-of-sample forecasting with AR(1) predictors, the Stein-rule shrinkage estimator can dominate both OLS and PC estimators when the predictors exhibit low persistence.
Details
Keywords
The causal relationship between money and income (output) has been an important topic and has been extensively studied. However, those empirical studies are almost entirely on…
Abstract
The causal relationship between money and income (output) has been an important topic and has been extensively studied. However, those empirical studies are almost entirely on Granger-causality in the conditional mean. Compared to conditional mean, conditional quantiles give a broader picture of an economy in various scenarios. In this paper, we explore whether forecasting conditional quantiles of output growth can be improved using money growth information. We compare the check loss values of quantile forecasts of output growth with and without using past information on money growth, and assess the statistical significance of the loss-differentials. Using U.S. monthly series of real personal income or industrial production for income and output, and M1 or M2 for money, we find that out-of-sample quantile forecasting for output growth is significantly improved by accounting for past money growth information, particularly in tails of the output growth conditional distribution. On the other hand, money–income Granger-causality in the conditional mean is quite weak and unstable. These empirical findings in this paper have not been observed in the money–income literature. The new results of this paper have an important implication on monetary policy, because they imply that the effectiveness of monetary policy has been under-estimated by merely testing Granger-causality in conditional mean. Money does Granger-cause income more strongly than it has been known and therefore information on money growth can (and should) be more utilized in implementing monetary policy.
Details
Keywords
Yong Bao and Tae-Hwy Lee
We investigate predictive abilities of nonlinear models for stock returns when density forecasts are evaluated and compared instead of the conditional mean point forecasts. The…
Abstract
We investigate predictive abilities of nonlinear models for stock returns when density forecasts are evaluated and compared instead of the conditional mean point forecasts. The aim of this paper is to show whether the in-sample evidence of strong nonlinearity in mean may be exploited for out-of-sample prediction and whether a nonlinear model may beat the martingale model in out-of-sample prediction. We use the Kullback–Leibler Information Criterion (KLIC) divergence measure to characterize the extent of misspecification of a forecast model. The reality check test of White (2000) using the KLIC as a loss function is conducted to compare the out-of-sample performance of competing conditional mean models. In this framework, the KLIC measures not only model specification error but also parameter estimation error, and thus we treat both types of errors as loss. The conditional mean models we use for the daily closing S&P 500 index returns include the martingale difference, ARMA, STAR, SETAR, artificial neural network, and polynomial models. Our empirical findings suggest the out-of-sample predictive abilities of nonlinear models for stock returns are asymmetric in the sense that the right tails of the return series are predictable via many of the nonlinear models, while we find no such evidence for the left tails or the entire distribution.
Bai Huang, Tae-Hwy Lee and Aman Ullah
This chapter examines the asymptotic properties of the Stein-type shrinkage combined (averaging) estimation of panel data models. We introduce a combined estimation when the fixed…
Abstract
This chapter examines the asymptotic properties of the Stein-type shrinkage combined (averaging) estimation of panel data models. We introduce a combined estimation when the fixed effects (FE) estimator is inconsistent due to endogeneity arising from the correlated common effects in the regression error and regressors. In this case, the FE estimator and the CCEP estimator of Pesaran (2006) are combined. This can be viewed as the panel data model version of the shrinkage to combine the OLS and 2SLS estimators as the CCEP estimator is a 2SLS or control function estimator that controls for the endogeneity arising from the correlated common effects. The asymptotic theory, Monte Carlo simulation, and empirical applications are presented. According to our calculation of the asymptotic risk, the Stein-like shrinkage estimator is more efficient estimation than the CCEP estimator.