Search results

1 – 3 of 3
Article
Publication date: 7 June 2019

Grzegorz Tomaszewski, Jerzy Potencki, Grzegorz Błąd, Tadeusz Wałach, Grzegorz Gajór, Alena Pietrikova and Peter Lukacs

The purpose of this paper is to study the repeatability of path manufacturing in the drop on demand inkjet printing process and the influences of environmental and application…

Abstract

Purpose

The purpose of this paper is to study the repeatability of path manufacturing in the drop on demand inkjet printing process and the influences of environmental and application factors on path resistance.

Design/methodology/approach

Paths were printed as multiline paths in packets one-, two- and three-layer paths on polyimide substrates using nanoparticle silver ink. The sintering conditions were determined experimentally. The paths were subjected to climatic and shock exposures and to bending processes. The resistance, profile and width of the paths were measured and analyzed. The temperature distribution for electrically heated paths was measured to identify the defects.

Findings

This research shows the repeatability of printing processes and identifies the sources that cause diversification in path parameters after the whole technological process. The influence of shock, climatic and mechanical exposures on path electrical properties is indicated. An effective method for identifying defects thermally is shown.

Research limitations/implications

The research could have limited universality by arbitrarily use of substrate material, ink, printhead, process parameters and kind of sample exposures.

Practical implications

The research includes practically useful information about the width, thickness, defects and resistances and their changes during a typical application for a path printed with different technological parameters.

Originality/value

This research presents the results of original empirical research on problems concerning the manufacture of paths with uniform parameters and shows how path parameters will change under exposures that may occur in a typical application. The research combines both production and application aspects.

Details

Circuit World, vol. 45 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 July 2018

Jerzy Potencki, Grzegorz Tomaszewski, Tadeusz Wałach and Witold Malikowski

The purpose of this study is to design a simple and cheap temperature transducer with frequency output with high measurement resolution in low temperature co-fired ceramic (LTCC…

Abstract

Purpose

The purpose of this study is to design a simple and cheap temperature transducer with frequency output with high measurement resolution in low temperature co-fired ceramic (LTCC) technology by using the distributed Resistance-Capacitance (RC) networks in high-pass filter configuration.

Design/methodology/approach

This paper presents the concept of elaboration of a transducer of temperature into frequency, its implementation in LTCC technology and test results. Construction and technological works are supported by a series of computer simulations of the process of indirect adjustment of the whole system.

Findings

The investigation results of the proposed and developed system have confirmed the correctness of the adopted concept, and the practical usefulness of an applied original method of indirect adjusting of the transducer.

Practical implications

The study contains practical and useful information about the principles of designing and manufacturing of the converters of the different physical quantities into frequency by using the elements with distributed parameters made in LTCC technology which was presented on the example of a temperature transducer.

Originality/value

The study presents the original solution of a simple transducer with the use of RC structures with distributed parameters made in LTCC technology and the idea of indirect adjustment of the elements to a desired value.

Details

Microelectronics International, vol. 35 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 15 January 2018

Grzegorz Tomaszewski, Jerzy Potencki and Tadeusz Wałach

This paper aims to study the packing density of printed paths on different substrate materials. It presents problems which appear when the necessity of printing one or more narrow…

Abstract

Purpose

This paper aims to study the packing density of printed paths on different substrate materials. It presents problems which appear when the necessity of printing one or more narrow paths occurs.

Design/methodology/approach

A piezoelectric printhead containing nozzles with a diameter of 35 µm was used for printing nanoparticle silver ink on different polymer substrates which were treated by plasma or not treated at all. The shape, defects, resistance and printing parameters for the printed paths were analysed.

Findings

The obtained results allow the identification of the sources of the technological problems in obtaining a high packing density of the paths in a small area of substrate and the repeatable prints.

Research limitations/implications

The study could have limited universality because of the chosen research method; printhead, ink, substrate materials and process parameters were arbitrarily selected. The authors encourage the study of other kinds of conductive inks, treatment methods and printing process parameters.

Practical implications

The study includes practically useful information about widths, shapes, defects and the resistance of the paths printed using different technological parameters.

Originality/value

The study presents the results of original empirical research on problems of the packing density of inkjet printed paths on a small area of substrate and identifies problems that must be resolved to obtain effective interconnections in the inkjet technology.

Details

Circuit World, vol. 44 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 3 of 3