F.F.M Shaikh, T.D. Dongale and R.K. Kamat
The overall purpose of this research paper largely depends on developing an easy method to synthesis a material suitable for supercapacitor application. This paper includes the…
Abstract
Purpose
The overall purpose of this research paper largely depends on developing an easy method to synthesis a material suitable for supercapacitor application. This paper includes the synthesis of, α-Co(OH)2, its structural, elemental and morphological properties and its supercapacitor properties.
Design/methodology/approach
Firstly, the electrolyte is prepared using binder free method, then electrodeposition is used to synthesize α-Co(OH)2 at 2 V. X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and scanning electron microscope (SEM) are used to study the structural, elemental and morphological characteristics. The supercapacitor properties are investigated by using cyclic voltammetry, charging-discharging graph, stability test and electrochemical impedance spectroscopy (EIS).
Findings
Synthesis of α-Co(OH)2 is a tedious job as the temperature and use of weak base plays an important role. However, throughout electrodeposition, temperature is maintained using a water bath and weak base as the precursor. The presence of nitrate anions shows more interlayer space than that of ß-Co(OH)2 because of which free diffusion of the electrolyte is possible. Sheets structures are more visible in SEM images. Nanosheet like structure is observed in the film and such kind of structure provide higher surface area and higher specific capacitance. Usually, the surface morphology of cobalt hydroxide shows flower-like, spherical and nanocubes particles. The cross-section of the deposited film and it is found to be approximately 100 µm. In the forward and backward scan, oxidation and reduction peaks are clearly visible. However, such a behavior is reported as stable because of no further peaks of oxidation.
Originality/value
XRD and EDS confirms the growth of α-Co(OH)2. SEM images shows the porous nature of the film. Specific capacitance and energy density has been estimated at 5 mV s−1 is 780 F g−1 and 82 W h kg−1, respectively. The film was stable for 600 cycles showing 75 per cent capacitance retention. The voltage drop is 0.02 V for 0.5 A cm−2, indicating low resistance and good conductivity of the film. The specific power is estimated to be 15 W kg−1 for 1 A cm−2. The value of RESR, RCT, CDL and W is 4.83 Ohm, 1.273 Ohm, 0.00233 C and 0.717, respectively. Thus indicating α-Co(OH)2 to be better candidate for supercapacitor applications.
Details
Keywords
Ting Li, Xianggang Chen, Junhai Wang, Lixiu Zhang, Xinran Li and Xiaoyi Wei
The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil…
Abstract
Purpose
The purpose of this study is to prepare ZnFe2O4 nanospheres, sheet MoS2 and three ZnFe2O4@MoS2 core-shell composites with various shell thicknesses, and add them to the base oil for friction and wear tests to simulate the wear conditions of hybrid bearings.
Design/methodology/approach
Through the characterization and analysis of the morphology of wear scars and the elemental composition of friction films, the tribological behavior and wear mechanism of sample materials as lubricant additives were investigated and the effects of shell thickness and sample concentration on the tribological properties of core–shell composite lubricant additives were discussed.
Findings
The findings demonstrate that each of the five sample materials can, to varying degrees, enhance the lubricating qualities of the base oil and that the core–shell nanocomposite sample lubricant additive has superior lubricating properties to those of ZnFe2O4 and MoS2 alone, among them ZnFe2O4@MoS2-2 core–shell composites with moderate shell thickness performed most ideally. In addition, the optimal concentration of the ZnFe2O4@MoS2 lubricant additive was 0.5 Wt.%, and a concentration that was too high led to particle deposition and affected the friction effect.
Originality/value
In this work, ZnFe2O4@MoS2 core–shell composites were synthesized for the first time using ZnFe2O4 as the carrier and the lubrication mechanism of core–shell composites and single materials were compared and studied, which illustrated the advantages of core–shell composite lubricant additives. At the same time, the influence of different shell thicknesses on the lubricant additives of core–shell composites was studied.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0367/