Search results

1 – 9 of 9
Article
Publication date: 17 March 2014

M. Khairalla, M.F. Rahmat, N. Abdul Wahab, I.T. Thuku, T. Tajdari and Abdulrahman Amuda Yusuf

An identification model for materials flow through a pipeline is presented in this paper. The development of the model involves fuzzy C-means clustering, in which different flow…

Abstract

Purpose

An identification model for materials flow through a pipeline is presented in this paper. The development of the model involves fuzzy C-means clustering, in which different flow regimes can be identified by every adaptive network-based fuzzy inference system (ANFIS). The paper aims to discuss these issues.

Design/methodology/approach

For experimentation, 16 electrodynamic sensors were used to monitor and measure the charge carried by dense particles flow through a pipeline in a vertical gravity flow rig system. Four ANFIS models were also used simultaneously to provide the expected output on thresh-holding and were evaluated for ten different flow regimes, which produced satisfactory results at high flow rate.

Findings

The observations made on the four ANFIS models in the flow identification experimentation (in ten different flow regimes) have shown convincing and satisfactory results at high-flow rate of the particles.

Originality/value

Electrodynamic sensors have shown strong sensing capability in identification of dense-particle flows within a conveyor; and also proven capability to operate effectively in harsh industrial environments due to their firm and simple structures. Moreover, it has been verified that these sensors can conveniently be applied in flow regime identification of solid particles.

Details

Sensor Review, vol. 34 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 September 2024

Jinxin Liu, Huanqin Wang, Qiang Sun, Chufan Jiang, Jitong Zhou, Gehang Huang, Fajun Yu and Baolin Feng

This study aims to establish a multi-physics-coupled model for an electrostatic particulate matter (PM) sensor. The focus lies on investigating the deposition patterns of…

Abstract

Purpose

This study aims to establish a multi-physics-coupled model for an electrostatic particulate matter (PM) sensor. The focus lies on investigating the deposition patterns of particles within the sensor and the variation in the regeneration temperature field.

Design/methodology/approach

Computational simulations were initially conducted to analyse the distribution of particles under different temperature and airflow conditions. The study investigates how particles deposit within the sensor and explores methods to expedite the combustion of deposited particles for subsequent measurements.

Findings

The results indicate that a significant portion of the particles, approximately 61.8% of the total deposited particles, accumulates on the inside of the protective cover. To facilitate rapid combustion of these deposited particles, a ceramic heater was embedded within the metal shielding layer and tightly integrated with the high-voltage electrode. Silicon nitride ceramic, selected for its high strength, elevated temperature stability and excellent thermal conductivity, enables a relatively fast heating rate, ensuring a uniform temperature field distribution. Applying 27 W power to the silicon nitride heater rapidly raises the gas flow region's temperature within the sensor head to achieve a high-temperature regeneration state. Computational results demonstrate that within 200 s of heater operation, the sensor's internal temperature can exceed 600 °C, effectively ensuring thorough combustion of the deposited particles.

Originality/value

This study presents a novel approach to address the challenges associated with particle deposition in electrostatic PM sensors. By integrating a ceramic heater with specific material properties, the study proposes an effective method to expedite particle combustion for enhanced sensor performance.

Details

Sensor Review, vol. 44 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 11 April 2022

Jie Zhu, Said Easa and Kun Gao

On-ramp merging areas are typical bottlenecks in the freeway network since merging on-ramp vehicles may cause intensive disturbances on the mainline traffic flow and lead to…

2667

Abstract

Purpose

On-ramp merging areas are typical bottlenecks in the freeway network since merging on-ramp vehicles may cause intensive disturbances on the mainline traffic flow and lead to various negative impacts on traffic efficiency and safety. The connected and autonomous vehicles (CAVs), with their capabilities of real-time communication and precise motion control, hold a great potential to facilitate ramp merging operation through enhanced coordination strategies. This paper aims to present a comprehensive review of the existing ramp merging strategies leveraging CAVs, focusing on the latest trends and developments in the research field.

Design/methodology/approach

The review comprehensively covers 44 papers recently published in leading transportation journals. Based on the application context, control strategies are categorized into three categories: merging into sing-lane freeways with total CAVs, merging into sing-lane freeways with mixed traffic flows and merging into multilane freeways.

Findings

Relevant literature is reviewed regarding the required technologies, control decision level, applied methods and impacts on traffic performance. More importantly, the authors identify the existing research gaps and provide insightful discussions on the potential and promising directions for future research based on the review, which facilitates further advancement in this research topic.

Originality/value

Many strategies based on the communication and automation capabilities of CAVs have been developed over the past decades, devoted to facilitating the merging/lane-changing maneuvers at freeway on-ramps. Despite the significant progress made, an up-to-date review covering these latest developments is missing to the authors’ best knowledge. This paper conducts a thorough review of the cooperation/coordination strategies that facilitate freeway on-ramp merging using CAVs, focusing on the latest developments in this field. Based on the review, the authors identify the existing research gaps in CAV ramp merging and discuss the potential and promising future research directions to address the gaps.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 22 March 2013

Iliya Tizhe Thuku, Mohd Fua'ad Rahmat, Norhaliza Abdul Wahab, Teimour Tajdari and Abdulrahamam Amuda Yusuf

Circular pipelines are mostly used for pneumatic conveyance in industrial processes. For optimum and efficient production in industries that use a pipeline for conveyance…

Abstract

Purpose

Circular pipelines are mostly used for pneumatic conveyance in industrial processes. For optimum and efficient production in industries that use a pipeline for conveyance, tomographic image of the transport particles is paramount. Sensing mechanism plays a vital role in process tomography. The purpose of this paper is to present a two‐dimensional (2‐D) model for sensing the characteristics of electrostatic sensors for electrical charge tomography system. The proposed model uses the finite‐element method.

Design/methodology/approach

The domain is discretized into discrete shapes, called finite elements, by using a MATLAB. Each of these elements is taken as image pixels, on which the electric charges carried by conveyed particles are transformed into equations. The charges' interaction and the sensors installed around the circumference, at the sensing zone of the conveying pipeline are related by the proposed model equations. A matrix compression technique was also introduced to solve the problem of unevenly sensing characteristics of the sensors due to elements' number's concentration. The model equations were used to simulate the modeled electrostatic charge distribution carried by the particles moving in the pipeline.

Findings

The simulated results show that the proposed sensors are highly sensitive to electrostatic charge at any position in the sensing zone, thereby making it a good candidate for tomographic image reconstruction.

Originality/value

Tomographic imaging using finite element method is found to be more accurate and reliable compared to linear and filtered back projection method.

Article
Publication date: 20 March 2017

Jiadi Qu, Fuhai Zhang, Yili Fu, Guozhi Li and Shuxiang Guo

The purpose of this paper is to develop a vision-based dual-arm cyclic motion method, focusing on solving the problems of an uncertain grasp position of the object and the…

Abstract

Purpose

The purpose of this paper is to develop a vision-based dual-arm cyclic motion method, focusing on solving the problems of an uncertain grasp position of the object and the dual-arm joint-angle-drift phenomenon.

Design/methodology/approach

A novel cascade control structure is proposed which associates an adaptive neural network with kinematics redundancy optimization. A radial basis function (RBF) neural network in conjunction with a conventional proportional–integral (PI) controller is applied to compensate for the uncertainty of the image Jacobian matrix which includes the estimated grasp position. To avoid the joint-angle-drift phenomenon, a dual neural network (DNN) solver in conjunction with a PI controller and dual-arm-coordinated constraints is applied to optimize the closed-chain kinematics redundancy.

Findings

The proposed method was implemented on an industrial robotic MOTOMAN with two 7-degrees of freedom robotic arms. Two experiments of carrying a tray repeatedly and turning a steering wheel were carried out, and the results indicate that the closed-trajectories tracking is achieved successfully both in the image plane and the joint spaces with the uncertain grasp position, which validates the accuracy and realizability of the proposed PI-RBF-DNN control strategy.

Originality/value

The adaptive neural network visual servoing method is applied to the dual-arm cyclic motion with the uncertain grasp position of the object. The proposed method enhances the environmental adaptability of a dual-arm robot in a practical manipulation task.

Details

Industrial Robot: An International Journal, vol. 44 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 July 2016

Adil Baykasoglu and Cengiz Baykasoglu

The purpose of this paper is to develop a new multi-objective optimization procedure for crashworthiness optimization of thin-walled structures especially circular tubes with…

Abstract

Purpose

The purpose of this paper is to develop a new multi-objective optimization procedure for crashworthiness optimization of thin-walled structures especially circular tubes with functionally graded thickness.

Design/methodology/approach

The proposed optimization approach is based on finite element analyses for construction of sample design space and verification; gene-expression programming (GEP) for generating algebraic equations (meta-models) to compute objective functions values (peak crash force and specific energy absorption) for design parameters; multi-objective genetic algorithms for generating design parameters alternatives and determining optimal combination of them. The authors have also utilized linear and non-linear least square regression meta-models as a benchmark for GEP.

Findings

It is shown that the proposed approach is able to generate Pareto optimal designs which are in a very good agreement with the actual results.

Originality/value

The paper presents the application of a genetic programming-based method, namely, GEP first time in the literature. The proposed approach can be used to all kinds of related crashworthiness problems.

Article
Publication date: 7 May 2019

Payman Joudzadeh, Alireza Hadi, Bahram Tarvirdizadeh, Danial Borooghani and Khalil Alipour

This paper aims to deal with the development of a novel lower limb exoskeleton to assist disabled people in stair ascending.

Abstract

Purpose

This paper aims to deal with the development of a novel lower limb exoskeleton to assist disabled people in stair ascending.

Design/methodology/approach

For this purpose, a novel design of a mixture of motors and cables has been proposed for users to wear them easily and show the application of the system in stair climbing.

Findings

One of the prominences of this study is the provided robot design where four joints are actuated with only two motors; each motor actuates either the knees or ankles. Another advantage of the designed system is that with motors placed in a backpack, the knee braces can be worn under clothes to be concealed. Finally, the system performance is evaluated using electromyography (EMG) signals showing 28 per cent reduction in energy consumption of related muscles.

Originality/value

This investigation deals with the development of a novel lower limb exoskeleton to assist disabled people in stair ascending.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 December 2021

Aarthy Prabakaran and Elizabeth Rufus

Wearables are gaining prominence in the health-care industry and their use is growing. The elderly and other patients can use these wearables to monitor their vitals at home and…

Abstract

Purpose

Wearables are gaining prominence in the health-care industry and their use is growing. The elderly and other patients can use these wearables to monitor their vitals at home and have them sent to their doctors for feedback. Many studies are being conducted to improve wearable health-care monitoring systems to obtain clinically relevant diagnoses. The accuracy of this system is limited by several challenges, such as motion artifacts (MA), power line interference, false detection and acquiring vitals using dry electrodes. This paper aims to focus on wearable health-care monitoring systems in the literature and provides the effect of MA on the wearable system. Also presents the problems faced while tracking the vitals of users.

Design/methodology/approach

MA is a major concern and certainly needs to be suppressed. An analysis of the causes and effects of MA on wearable monitoring systems is conducted. Also, a study from the literature on motion artifact detection and reduction is carried out and presented here. The benefits of a machine learning algorithm in a wearable monitoring system are also presented. Finally, distinct applications of the wearable monitoring system have been explored.

Findings

According to the study reduction of MA and multiple sensor data fusion increases the accuracy of wearable monitoring systems.

Originality/value

This study also presents the outlines of design modification of dry/non-contact electrodes to minimize the MA. Also, discussed few approaches to design an efficient wearable health-care monitoring system.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 January 2024

Mustafa S. Al-Khazraji

Auxetic sandwich structures are gaining attention because of the negative Poisson’s ratio effect offered by these structures. Re-entrant core was one configuration of the auxetic…

Abstract

Purpose

Auxetic sandwich structures are gaining attention because of the negative Poisson’s ratio effect offered by these structures. Re-entrant core was one configuration of the auxetic structures. There is a growing concern about the design and behavior of re-entrant cores in aerospace, marine and protection applications. Several researchers proposed various designs of re-entrant core sandwiches with various materials. The purpose of this study is to review the most recent advances in re-entrant core sandwich structures. This review serves as a guide for researchers conducting further research in this wide field of study.

Design/methodology/approach

The re-entrant core sandwich structures were reviewed in terms of their design improvements, impact and quasi-static crushing responses. Several design improvements were reviewed including 2D cell, 3D cell, gradient, hierarchical and hybrid configurations. Some common applications of the re-entrant core sandwiches were given at the end of this paper with suggestions for future developments in this field.

Findings

Generally, the re-entrant configuration showed improved energy absorption and impact response among auxetic structures. The main manufacturing method for re-entrant core manufacturing was additive manufacturing. The negative Poisson’s ratio effect of the re-entrant core provided a wide area of research.

Originality/value

Generally, re-entrant cores were mentioned in the review articles as part of other auxetic structures. However, in this review, the focus was solely made on the re-entrant core sandwiches with their mechanics.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 9 of 9