Search results

1 – 10 of 285
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 12 June 2018

T. Karthik, R. Murugan and Pandurangan Senthilkumar

Clothing must also assist the body’s thermal control function under changing physical loads in such a way that the body’s thermal and moisture management is balanced, and a…

194

Abstract

Purpose

Clothing must also assist the body’s thermal control function under changing physical loads in such a way that the body’s thermal and moisture management is balanced, and a microclimate is created next to the skin. One of the factors which affect moisture transport in a fabric is a fibre type. Hence, the purpose of this paper is to blend the natural hollow and low density fibre, milkweed, with cotton fibre at different proportions and to analyse and compare the influence of milkweed blend proportion on moisture management properties of rotor yarn fabrics with 100 per cent cotton fabric.

Design/methodology/approach

In the present study, cotton/milkweed blended rotor yarns were produced by using S-4 cotton variety and milkweed fibres in three different blend proportions such as cotton/milkweed 80/20, 60/40 and 40/60 along with 100 per cent cotton yarn with yarn count of 20 Ne. The single jersey knitted fabrics were produced with similar constructional parameters and then the fabrics were then scoured, bleached and neutralised as per the standard procedure. The fabrics have been analysed for its various moisture management properties using moisture management tester (MMT) and are statistically analysed.

Findings

The results indicate that, all the C/M blended fabrics have been classified as “moisture management fabric” and 100 per cent cotton fabric has been classified as “Fast absorbing and Quick Drying Fabric”. The overall moisture management capacity of C/M 40/60 fabric is excellent and could be used for summer, active and summer wear applications. One-way ANOVA analysis carried out at 95 per cent confidence level showed that the results are statistically significant. The pair-wise strength and association between various moisture management indices was analysed using Pearson correlation coefficient and observed that OWTC and OMMC was found to be positively and linearly related to each other.

Originality/value

The authors are confident that the cotton/milkweed blended yarns can be used as an inner wear and sportswear applications owing to the higher moisture regain and hollowness of milkweed fibre combined with the low packing density of C/M blended yarns which leads to overall improvement in moisture management properties of fabrics.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Access Restricted. View access options
Article
Publication date: 11 October 2022

Marina Stramarkou, Achilleas Bardakas, Magdalini Krokida and Christos Tsamis

Carbon dioxide (CO2) has attracted special scientific interest over the last years mainly because of its relation to climate change and indoor air quality. Except for this, CO2

351

Abstract

Purpose

Carbon dioxide (CO2) has attracted special scientific interest over the last years mainly because of its relation to climate change and indoor air quality. Except for this, CO2 can be used as an indicator of food freshness, patients’ clinical state and fire detection. Therefore, the accurate monitoring and controlling of CO2 levels are imperative. The development of highly sensitive, selective and reliable sensors that can efficiently distinguish CO2 in various conditions of temperature, humidity and other gases’ interference is the subject of intensive research with chemi-resistive zinc oxide (ZnO)-based sensors holding a privileged position. Several ZnO nanostructures have been used in sensing applications because of their versatile features. However, the deficient selectivity and long-term stability remain major concerns, especially when operating at room temperature. This study aims to encompass an extensive study of CO2 chemi-resistive sensors based on ZnO, introducing the most significant advances of recent years and the best strategies for enhancing ZnO sensing properties.

Design/methodology/approach

An overview of the different ZnO nanostructures used for CO2 sensing and their synthesis methods is presented, focusing on the parameters that highly affect the sensing mechanism and, thus, the performance of CO2 sensors.

Findings

The selectivity and sensitivity of ZnO sensors can be enhanced by adjusting various parameters during their synthesis and by doping or treating ZnO with suitable materials.

Originality/value

This paper summarises the advances in the rapidly evolving field of CO2 sensing by ZnO sensors and provides research directions for optimised sensors in the future.

Details

Sensor Review, vol. 42 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Access Restricted. View access options
Article
Publication date: 7 March 2016

Salvinija Petrulyte, Deimante Vankeviciute and Donatas Petrulis

The purpose of this paper is to investigate the physical properties of smart aromatherapic ramie/cotton terry fabrics containing microcapsules (MC) with essential Eucalyptus oil…

315

Abstract

Purpose

The purpose of this paper is to investigate the physical properties of smart aromatherapic ramie/cotton terry fabrics containing microcapsules (MC) with essential Eucalyptus oil.

Design/methodology/approach

Terry fabrics are manufactured by changing the weft density. The air permeability is determined for grey and microencapsulated textile. The factorial designs are made. For informative experiment the linear type of regression is analysed. Development of physical properties of microencapsulated terry fabrics is discussed.

Findings

The air permeability of aromatherapic terry fabrics is determined. All statistical analysis is performed. Appropriate conclusions about the influence of fabric’s structure and microencapsulating process on terry fabric quality are made.

Originality/value

To date there are no investigations concerning terry textiles with fragrance MC. This study developed analysis and empiric mathematical equations suitable for evaluating and designing terry fabrics with the air permeability required. Assessment of the influence of fabric’s weft density and binder concentration for the air permeability of terry textile is proposed.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Access Restricted. View access options
Article
Publication date: 5 May 2020

Sadaf Aftab Abbasi, Arzu Marmaralı and Gözde Ertekin

This paper investigates the thermal comfort properties of quilted (jersey cord) fabrics produced with different width of diamond pattern, different filling yarn linear density and…

362

Abstract

Purpose

This paper investigates the thermal comfort properties of quilted (jersey cord) fabrics produced with different width of diamond pattern, different filling yarn linear density and different types of material.

Design/methodology/approach

A total of 12 fabrics were knitted by varying the width of diamond pattern (1 and 3 cm), the filling yarn linear density (300 and 900 denier) and the type of materials (cotton, polyester and their combination). In this regard, air permeability, thermal conductivity, thermal resistance, thermal absorptivity and relative water vapor permeability of these fabrics were measured and evaluated statistically.

Findings

The results showed that fabrics knitted using cotton yarn in both front and back surfaces exhibit higher thermal conductivity, thermal absorptivity and relative water vapor permeability characteristics; whereas samples knitted using polyester yarn in both surfaces have higher air permeability and thermal resistance. As the linear density of filling yarn increases, thickness and thermal resistance of the samples increase and air permeability, thermal conductivity, water vapor permeability characteristics decrease. When the effect of the width of diamond pattern compared, it is seen that an increase in the width of pattern lead to an increase in thickness and thermal resistance and a decrease in thermal conductivity, thermal absorptivity and water vapor permeability values.

Originality/value

Many researches were carried out on the thermal comfort properties of knitted fabrics, however there is a lack of research efforts regarding thermal comfort properties of quilted fabrics.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Access Restricted. View access options
Article
Publication date: 31 January 2024

Wiah Wardiningsih, Farhan Aqil Syauqi Pradanta, Ryan Rudy, Resty Mayseptheny Hernawati and Doni Sugiyana

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric…

27

Abstract

Purpose

The purpose of this study is to analyse the characteristics of cellulose fibres derived from the pseudo-stems of Curcuma longa and to evaluate the properties of non-woven fabric produced using these fibres.

Design/methodology/approach

The fibres were extracted via a decortication method. The acquired intrinsic qualities of the fibres were used to assess the feasibility of using them in textile applications. The thermal bonding approach was used for the development of the non-woven fabric, using a hot press machine with low-melt polyester fibre as a binder.

Findings

The mean length of Curcuma longa fibres was determined to be 52.73 cm, with a fineness value of 4.00 tex. The fibres exhibited an uneven cross-sectional morphology, characterized by a diverse range of oval-shaped lumens. The fibre exhibited a tenacity of 1.45 g/denier and an elongation value of 4.30%. The fibres possessed a moisture regain value of 11.30%. The experimental non-woven fabrics had consistent weight and thickness, while exhibiting different properties in terms of tensile strength and air permeability, with Fabric C having the highest tensile strength and the lowest air permeability value.

Originality/value

The features of Curcuma longa fibre, obtained with the decortication process, exhibited suitability for textile applications. Three experimental non-woven fabrics comprising different compositions of Curcuma longa fibre and low-melt polyester fibre were produced. The tensile strength and air permeability properties of these fabrics were influenced by the composition of the fibres.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Access Restricted. View access options
Article
Publication date: 11 January 2018

Ramakrishnan G., Prakash C. and Janani G.

The purpose of this paper is to investigate plasma treatment for Tencel microfibre fabrics for possible improvement in various functional properties.

122

Abstract

Purpose

The purpose of this paper is to investigate plasma treatment for Tencel microfibre fabrics for possible improvement in various functional properties.

Design/methodology/approach

The plasma treated and untreated fabrics were dyed using reactive dyes and evaluated for comfort properties such as wicking, water vapour permeability and air permeability.

Findings

The various comfort properties of plasma treated and an untreated Tencel microfibre fabric have been studied. The wicking results showed a significant reduction in wicking time for plasma treated fabrics compared to untreated fabrics. The test results for water vapour permeability show no significant difference between plasma treated and untreated fabrics. The plasma treated samples show higher air permeability than untreated samples. In the wetting test, it is clearly seen that the plasma treated samples absorbed the water at a faster rate.

Originality/value

This research investigates plasma treatment for Tencel microfibre fabrics for possible improvement in various functional properties.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Access Restricted. View access options
Article
Publication date: 24 May 2023

Tuna Uysaler, Pelin Altay and Gülay Özcan

In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high…

151

Abstract

Purpose

In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high water, energy and time consumption. Nowadays, laser fading, which is a computer-controlled, dry, ecological finishing method, is preferred in the denim fading process. The purpose of this study is to observe the effects of chemical pretreatment applications on laser-faded denim fabric in terms of color and mechanical properties. To eliminate the enzyme washing process in denim fading and to minimize the disadvantages of laser fading, such as decreased mechanical properties and increased fabric yellowness, various chemical pretreatment applications were applied to the denim fabric before laser fading, followed by simple rinsing instead of enzyme washing.

Design/methodology/approach

Two different indigo-dyed, organic cotton denim fabrics with different unit weights were exposed to pretreatment processes and then laser treatment, followed by simple rinsing. Polysilicic acid, boric acid, borax and bicarbonate were used for pretreatment processes, and laser treatment was carried out under optimized laser parameters (40 dpi resolution and 300 µs pixel time). Tensile strength was tested, and color values (CIE L*, a*, b*, ΔE*, C* and h), color yield (K/S), yellowness and whiteness indexes were measured to identify the color differences.

Findings

Before laser fading, 30 g/L and 40 g/L polysilicic acid pretreatments for sulfur-indigo-dyed fabric and a mixture of 10 g/L boric acid and 10 g/L borax pretreatments for the fabric only indigo-dyed were recommended for the laser fading with sufficient mechanical properties and good color values.

Originality/value

With the chemical pretreatments defined in this study, it was possible to reduce yellowness and maintain the mechanical properties after laser fading, thus minimizing the disadvantages of laser treatment and also eliminating enzyme washing.

Details

Research Journal of Textile and Apparel, vol. 28 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Access Restricted. View access options
Article
Publication date: 18 April 2017

R. Rathinamoorthy and G. Thilagavathi

Odour formation in textile material is mainly based on the fibre content and also the constituent fibres’ chemical and physical structures. Polyester fibre materials are very…

193

Abstract

Purpose

Odour formation in textile material is mainly based on the fibre content and also the constituent fibres’ chemical and physical structures. Polyester fibre materials are very profound to form odour after being worn due to their highly oleophilic nature. The purpose of this paper is to analyse the odour formation characteristics of polyester fabric after surface modification through alkali treatment.

Design/methodology/approach

Five male participants were allowed to use the alkali-treated and untreated polyester fabrics, which were fixed in the axilla region of their vest. Subjective and objective odour analyses were performed for the worn samples. The odour was evaluated in terms of intensity rating, bacterial population (CFU/ml) and bacterial isolation.

Findings

The results showed that alkali treatment was effective in odour reduction in polyester fabric (p<0.005). The bacterial population density was also reduced significantly (p<0.005) in the alkali-treated polyester fabric compared to the untreated polyester fabric after the wear trial. The alkali treatment affected the surface structure of the polyester fabric and thus changed it from hydrophilic to hydrophobic. This was confirmed by the moisture management test results.

Originality/value

The odour formation in the polyester fabric can be controlled by simple surface modification process like alkali treatment, and thus the value of the product can be increased in the apparel sector.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Access Restricted. View access options
Article
Publication date: 31 October 2024

Wiah Wardiningsih, Ryan Rudy, Witri Aini Salis, Rinayati Aprilia, Rachmaningsih Wardatul Jannah and Rr Wiwiek Eka Mulyani

This study aims to analyse cellulose fibres extracted from the pseudo-stems of Cymbopogon citratus and evaluate their properties in non-woven fabric production.

15

Abstract

Purpose

This study aims to analyse cellulose fibres extracted from the pseudo-stems of Cymbopogon citratus and evaluate their properties in non-woven fabric production.

Design/methodology/approach

The water retting method was used for fibre extraction, and intrinsic fibre qualities were examined to assess their suitability for textile applications. A thermal bonding technique, using a hot press machine and polylactic acid powder as a binder, was applied for non-woven fabric development.

Findings

The retted fibres had an average length of 156 mm and a fineness value of 5.73 tex. The fibre’s tenacity and elongation values were 1.33 gf/denier and 12.78%, respectively. Fourier transform infrared analysis confirmed the presence of major cellulose components. The fibre’s crystallinity and friction coefficient were 50% and 0.3, respectively. C. citratus fibre exhibited hygroscopic characteristics with a moisture regain of 10.65%. Experimental non-woven fabrics (70% C. citratus fibre, 30% polylactic acid powder) demonstrated consistent weight and thickness, with variations in tensile strength. Moisture regain values for non-woven fabrics were approximately 7.6%.

Originality/value

The features of C. citratus fibre, obtained with the water retting process, exhibited suitability for textile applications. Three experimental non-woven fabrics comprising of C. citratus fibre and polylactic acid powder were produced with three different pressing temperatures. The tensile strength properties of these fabrics were influenced by pressing temperature.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Access Restricted. View access options
Article
Publication date: 13 January 2023

Alessio Di Leo, Fabiola Sfodera, Nicola Cucari, Giovanni Mattia and Luca Dezi

The purpose of this research is to identify the sustainable practices of luxury fashion brands through their communications via official reporting documents to classify practices…

3035

Abstract

Purpose

The purpose of this research is to identify the sustainable practices of luxury fashion brands through their communications via official reporting documents to classify practices used for communicating sustainability performance.

Design/methodology/approach

This research uses the qualitative content analysis of Global Reporting Initiative (GRI)-oriented sustainability reports to examine the sustainable practices of 31 companies within the top 100 global luxury brands.

Findings

The authors classify the sample into four clusters: sustainability driven, sustainability newcomers, sustainability potential and sustainability passive. Results indicate that companies in this sector are focused on the issue of sustainability even though there is a remarkable fragmentation in terms of practices.

Originality/value

The study contributes to a better understanding of sustainability reporting activities and approaches in the fashion luxury industry by describing best practices and the effect of sustainability in corporate communications.

Details

Management Decision, vol. 61 no. 5
Type: Research Article
ISSN: 0025-1747

Keywords

1 – 10 of 285
Per page
102050