A. Alexeev, T. Gambaryan‐Roisman and P. Stephan
This paper aims to study thermocapillarity‐induced flow of thin liquid films covering heated horizontal walls with 2D topography.
Abstract
Purpose
This paper aims to study thermocapillarity‐induced flow of thin liquid films covering heated horizontal walls with 2D topography.
Design/methodology/approach
A numerical model based on the 2D solution of heat and fluid flow within the liquid film, the gas above the film and the structured wall is developed. The full Navier‐Stokes equations are solved and coupled with the energy equation by a finite difference algorithm. The movable gas‐liquid interface is tracked by means of the volume‐of‐fluid method. The model is validated by comparison with theoretical and experimental data showing a good agreement.
Findings
It is demonstrated that convective motion within a film on a structured wall exists at any nonzero Marangoni number. The motion is caused by surface tension gradients induced by temperature differences at the gas‐liquid interface due to the spatial structure of the heated wall. These simulations predict that the maximal flow velocity is practically independent from the film thickness, and increases with increasing temperature difference between the wall and the surrounding gas. It is found that an abrupt change in wall temperature causes rupture of the liquid film. The thermocapillary convection notably enhances heat transfer in liquid films on heated structured walls.
Research limitations/implications
Our solutions are restricted to the case of periodic wall structure, and the flow is enforced to be periodic with a period equal to that of the wall.
Practical implications
The reported results are useful for design of the heat transfer equipment.
Originality/value
New effects in thermocapillary convection are presented and studied using a developed numerical model.
Details
Keywords
Hadi Miyanaji, Niknam Momenzadeh and Li Yang
This study aims to experimentally investigate the effect of the powder material characteristics on the qualities of the binder jetting additive manufacturing parts both before and…
Abstract
Purpose
This study aims to experimentally investigate the effect of the powder material characteristics on the qualities of the binder jetting additive manufacturing parts both before and after post processing (sintering).
Design methodology/approach
Three different types of the 316L stainless steel powder feedstock with various mean particle sizes and size distributions were studied. The influence of the powder particle size distributions and pore sizes on the powder bed packing densities and on the dynamics of the binder droplet-powder bed interactions were characterized. In addition, the surface roughness and densities of these parts both in the green state and after sintering were studied.
Findings
The results revealed the significant role of the powder feedstock characteristics on the liquid binder/powder bed interaction and consequently on the dimensional accuracies of the green parts. It was observed that the parts printed with the smaller mean particle sizes resulted in better surface finish and higher final densities after sintering. Furthermore, the hardness of the sintered parts produced with smaller powder particles exhibited higher values compared to the parts fabricated with the larger particles. On the other hand, larger particle sizes are advantageous for various green part qualities including the dimensional accuracies, green part densities and surface roughness.
Originality/value
This study establishes more comprehensive correlations between the powder feedstock characteristics and various quality criteria of the printed binder jetting components in both green and sintered states. These correlation are of critical importance in choosing the optimal process parameters for a given material system.
Details
Keywords
Lun Hao Tung, Fei Chong Ng, Aizat Abas, M.Z. Abdullah, Zambri Samsudin and Mohd Yusuf Tura Ali
This paper aims to determine the optimum set of temperatures through correlation study to attain the most effective capillary flow of underfill in a multi-stack ball grid array…
Abstract
Purpose
This paper aims to determine the optimum set of temperatures through correlation study to attain the most effective capillary flow of underfill in a multi-stack ball grid array (BGA) chip device.
Design/methodology/approach
Finite volume method is implemented in the simulation. A three-layer multi-stack BGA is modeled to simulate the underfill flow. The simulated models were well validated with the previous experimental work on underfill process.
Findings
The completion filling time shows high regression R-squared value of up to 0.9918, which indicates a substantial acceleration on the underfill process because of incorporation of thermal delta. An introduction of 11 °C thermal delta to the multi-stacks BGA managed to reduce the filling time by up to 16.4%.
Practical implications
Temperature-induced capillary flow is a relatively new type of driven underfill designed specifically for package on package BGA components. Its simple implementation can further improve the productivity of existing underfill process in the industry that is desirable in reducing the process lead time.
Originality/value
The effect of temperature-induced capillary flow in underfill encapsulation on multi-stacks BGA by means of statistical correlation study is a relatively new topic, which has never been reported in any other research according to the authors’ knowledge.
Details
Keywords
Zhe Liu, Hao Wei, Li Chen, Haihang Cui and Bohua Sun
The purpose of this study is to establish an effective numerical simulation method to describe the flow pattern and optimize the strategy of noncontact mixing induced by…
Abstract
Purpose
The purpose of this study is to establish an effective numerical simulation method to describe the flow pattern and optimize the strategy of noncontact mixing induced by alternating Gaussian light inside a nanofluid droplet and analyzing the influencing factors and flow mechanism of fluid mixing inside a droplet.
Design/methodology/approach
First, the heat converted by the alternating incident Gaussian light acting on the nanoparticles was considered as the bulk heat source distribution, and the equilibrium equation between the surface tension and the viscous force at the upper boundary force was established; then, the numerical simulation methods for multiple-physical-field coupling was established, and the mixing index was used to quantify the mixing degree inside a droplet. The effects of the incident position of alternating Gaussian light and the height of the droplet on the mixing characteristics inside a droplet were studied. Finally, the nondimensional Marangoni number was used to reveal the flow mechanism of the internal mixing of the droplet.
Findings
Noncontact alternating Gaussian light can induce asymmetric vortex motion inside a nanofluid droplet. The incident position of alternating Gaussian light is a significant factor affecting the mixing degree in the droplet. In addition, the heat transfer caused by the surface tension gradient promotes the convection effect, which significantly enhances the mixing of the fluid in the droplet.
Originality/value
This study demonstrates the possibility of the chaotic mixing phenomenon induced by noncontact Gaussian light that occurs within a tiny droplet and provides a feasible method to achieve efficient mixing inside droplets at the microscale.
Details
Keywords
The purpose of this paper is to develop a numerical model to simulate the flow field as well as the conjugate heat transfer during unsteady cooling of a flat plate with a single…
Abstract
Purpose
The purpose of this paper is to develop a numerical model to simulate the flow field as well as the conjugate heat transfer during unsteady cooling of a flat plate with a single submerged water jet. At wall temperatures above the liquid boiling point, the vapor formation process and the interaction of the vapor phase with the developing jet-flow field are included.
Design/methodology/approach
The time-dependent flow and temperature distribution during all occurring boiling phases as well as the local and temporal distribution of the heat transfer coefficient on a flat plate can be simulated.
Findings
The influence of the liquid jet flow rate (10,800=Re_d=32,400) and the nozzle distance to the plate (4=H/d=20) on the transient cooling process are analyzed. This includes the time-dependant positions of the transition regions between the boiling phases on the plate as well as the temperatures at these transition regions. Additionally, the local heat transfer rates are a direct result of the unsteady cooling simulation.
Originality/value
A single model approach is developed and utilized to simulate the unsteady cooling process of a flat plate with an impinging water jet including all occurring boiling phases.
Details
Keywords
Luca Marioni, Mehdi Khalloufi, Francois Bay and Elie Hachem
This paper aims to develop a robust set of advanced numerical tools to simulate multiphase flows under the superimposition of external uniform magnetic fields.
Abstract
Purpose
This paper aims to develop a robust set of advanced numerical tools to simulate multiphase flows under the superimposition of external uniform magnetic fields.
Design/methodology/approach
The flow has been simulated in a fully Eulerian framework by a {\it variational multi-scale} method, which allows to take into account the small-scale turbulence without explicitly model it. The multi-fluid problem has been solved through the convectively re-initialized level-set method to robustly deal with high density and viscosity ratio between the phases and the surface tension has been modelled implicitly in the level-set framework. The interaction with the magnetic field has been modelled through the classic induction equation for 2D problems and the time step computation is based on the electromagnetic interaction to guarantee convergence of the method. Anisotropic mesh adaptation is then used to adapt the mesh to the main problem’s variables and to reach good accuracy with a small number of degrees of freedom. Finally, the variational multiscale method leads to a natural stabilization of the finite elements algorithm, preventing numerical spurious oscillations in the solution of Navier–Stokes equations (fluid mechanics) and the transport equation (level-set convection).
Findings
The methodology has been validated, and it is shown to produce accurate results also with a low number of degrees of freedom. The physical effect of the external magnetic field on the multiphase flow has been analysed.
Originality/value
The dam-break benchmark case has been extended to include magnetically constrained flows.