Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 9 May 2016

Abdoulaye Badiane, Sylvie Nadeau, Jean-Pierre Kenné and Vladimir Polotski

The optimization of production imposes a review of facility maintenance policies. Accidents during maintenance activities are frequent, sometimes fatal and often associated with…

521

Abstract

Purpose

The optimization of production imposes a review of facility maintenance policies. Accidents during maintenance activities are frequent, sometimes fatal and often associated with deficient or absent machinery lockout/tagout. Lockout/tagout is often circumvented in order to avoid what may be viewed as unnecessary delays and increased production costs. To reduce the dangers inherent in such practice, the purpose of this paper is to propose a production strategy that provides for machinery lockout/tagout while maximizing manufacturing system availability and minimizing costs.

Design/methodology/approach

The joint optimization problem of production planning, maintenance and safety planning is formulated and studied using a stochastic optimal control methodology. Hamilton-Jacobi-Bellman equations are developed and studied numerically using the Kushner approach based on finite difference approximation and an iterative policy improvement technique.

Findings

The analysis leads to a solution that suggests increasing the “comfortable” inventory level in order to provide the time required for lockout/tagout activities. It is also demonstrated that the optimization of lockout/tagout procedures is particularly important when the equipment is relatively new and the inventory level is minimal.

Research limitations/implications

This paper demonstrates that it is possible to integrate production, maintenance and lockout/tagout procedures into production planning while keeping manufacturing system cost objectives attainable as well as ensuring worker safety.

Originality/value

This integrated production and maintenance policy is unique and complements existing procedures by explicitly accounting for safety measures.

Details

Journal of Quality in Maintenance Engineering, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Access Restricted. View access options
Article
Publication date: 7 October 2014

Behnam Emami-Mehrgani, Sylvie Nadeau and Jean-Pierre Kenné

The analysis of the optimal production and preventive maintenance with lockout/tagout planning problem for a manufacturing system is presented in this paper. The considered…

668

Abstract

Purpose

The analysis of the optimal production and preventive maintenance with lockout/tagout planning problem for a manufacturing system is presented in this paper. The considered manufacturing system consists of two non-identical machines in passive redundancy producing one type of part. These machines are subject to random breakdowns and repairs. The purpose of this paper is to minimize production, inventory, backlog and maintenance costs over an infinite planning horizon; in addition, it aims to verify the influence of human reliability on the inventory levels for illustrating the importance of human error during the maintenance and lockout/tagout activities.

Design/methodology/approach

This paper is different compared to other research projects on preventive maintenance and lockout/tagout. The influence of human error on lockout/tagout as well as on preventive maintenance activities are presented in this paper. The preventive maintenance policy depends on the machine age. For the considered manufacturing system the optimality conditions are provided, and numerical methods are used to obtain machine age-dependent optimal control policies (production and preventive maintenance rates with lockout/tagout). Numerical examples and sensitivity analysis are presented to illustrate the usefulness of the proposed approach. The system capacity is described by a finite-state Markov chain.

Findings

The proposed model taking into account the preventive maintenance activities with lockout/tagout and human error jointly, instead of taking into account separately. It verifies the influence of human error during preventive maintenance and lockout/tagout activities on the optimal safety stock levels using an extension of the hedging point structure.

Practical implications

The model proposed in this paper might be extended to manufacturing systems, but a number of conditions must be met to make effective use of it.

Originality/value

The originality of this paper is to consider the preventive maintenance activities with lockout/tagout and human error simultaneously. The control policy is obtained in order to find the solution for the considered manufacturing system. This paper also brings a new vision on the importance of human reliability during preventive maintenance and lockout/tagout activities.

Details

Journal of Quality in Maintenance Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 2 of 2
Per page
102050