J. Jayaprakash, Vediyappan Govindan, S.S. Santra, S.S. Askar, Abdelaziz Foul, Susmay Nandi and Syed Modassir Hussain
Scientists have been conducting trials to find ways to reduce fuel consumption and enhance heat transfer rates to make heating systems more efficient and cheaper. Adding solid…
Abstract
Purpose
Scientists have been conducting trials to find ways to reduce fuel consumption and enhance heat transfer rates to make heating systems more efficient and cheaper. Adding solid nanoparticles to conventional liquids may greatly improve their thermal conductivity, according to the available evidence. This study aims to examine the influence of external magnetic flux on the flow of a mixed convective Maxwell hybrid non-Newtonian nanofluid over a linearly extending porous flat plate. The investigation considers the effects of thermal radiation, Dufour and Soret.
Design/methodology/approach
The mathematical model is formulated based on the fundamental assumptions of mass, energy and momentum conservation. The implicit models are epitomized by a set of interconnected nonlinear partial differential equations, which include a suitable and comparable adjustment. The numerical solution to these equations is assessed for approximate convergence by the Runge−Kutta−Fehlberg method based on the shooting technique embedded with the MATLAB software.
Findings
The findings are presented through graphical representations, offering a visual exploration of the effects of various dynamic parameters on the flow field. These parameters encompass a wide range of factors, including radiation, thermal and Brownian diffusion parameters, Eckert, Lewis and Soret numbers, magnetic parameters, Maxwell fluid parameters, Darcy numbers, thermal and solutal buoyancy factors, Dufour and Prandtl numbers. Notably, the authors observed that nanoparticles with a spherical shape exerted a significant influence on the stream function, highlighting the importance of nanoparticle geometry in fluid dynamics. Furthermore, the analysis revealed that temperature profiles of nanomaterials were notably affected by their shape factor, while concentration profiles exhibited an opposite trend, providing valuable insights into the behavior of nanofluids in porous media.
Originality/value
A distinctive aspect of the research lies in its novel exploration of the impact of external magnetic flux on the flow of a mixed convective Maxwell hybrid non-Newtonian nanofluid over a linearly extending porous flat plate. By considering variables such as solar radiation, external magnetic flux, thermal and Brownian diffusion parameters and nanoparticle shape factor, the authors ventured into uncharted territory within the realm of fluid dynamics. These variables, despite their significant relevance, have not been extensively studied in previous research, thus underscoring the originality and value of the authors’ contribution to the field.
Details
Keywords
Ephesus O. Fatunmbi, A.M. Obalalu, Umair Khan, Syed Modassir Hussain and Taseer Muhammad
In today’s world, the demand for energy to power industrial and domestic activities is increasing. To meet this need and enhance thermal transport, solar energy conservation can…
Abstract
Purpose
In today’s world, the demand for energy to power industrial and domestic activities is increasing. To meet this need and enhance thermal transport, solar energy conservation can be tapped into via solar collector coating for thermal productivity. Hybrid nanofluids (HNFs), which combine nanoparticles with conventional heat transfer fluids, offer promising opportunities for improving the efficiency and sustainability of renewable energy systems. Thus, this paper explores fluid modeling application techniques to analyze and optimize heat transfer enhancement using HNFs. A model comprising solar energy radiation with nanoparticles of copper (Cu) and alumina oxide (Al2O3) suspended in water (H2O) over an extending material device is developed.
Design/methodology/approach
The model is formulated using conservation laws to build relevant equations, which are then solved using the Galerkin numerical technique simulated via Maple software. The computational results are displayed in various graphs and tables to showcase the heat transfer mechanism in the system.
Findings
The results reveal the thermal-radiation-boost heat transfer phenomenon in the system. The simulations of the theoretical fluid models can help researchers understand how HNFs facilitate heat transfer in renewable energy systems.
Originality/value
The originality of this study is in exploring the heat transfer properties within renewable energy systems using HNFs under the influence of nonlinear thermal radiation.
Details
Keywords
Syed Modassir Hussain, Rohit Sharma, Manoj Kumar Mishra and Jitendra Kumar Singh
Nanosized honeycomb-configured materials are used in modern technology, thermal science and chemical engineering due to their high ultra thermic relevance. This study aims to…
Abstract
Purpose
Nanosized honeycomb-configured materials are used in modern technology, thermal science and chemical engineering due to their high ultra thermic relevance. This study aims to scrutinize the heat transmission features of magnetohydrodynamic (MHD) honeycomb-structured graphene nanofluid flow within two squeezed parallel plates under Joule dissipation and solar thermal radiation impacts.
Design/methodology/approach
Mass, energy and momentum preservation laws are assumed to find the mathematical model. A set of unified ordinary differential equations with nonlinear behavior is used to express the correlated partial differential equations of the established models, adopting a reasonable similarity adjustment. An approximate convergent numerical solution to these equations is evaluated by the shooting scheme with the Runge–Kutta–Fehlberg (RKF45) technique.
Findings
The impression of pertinent evolving parameters on the temperature, fluid velocity, entropy generation, skin friction coefficients and the heat transference rate is explored. Further, the significance of the irreversibility nature of heat transfer due to evolving flow parameters are evaluated. It is noted that the heat transference rate performance is improved due to the imposition of the allied magnetic field, Joule dissipation, heat absorption, squeezing and thermal buoyancy parameters. The entropy generation upsurges due to rising magnetic field strength while its intensification is declined by enhancing the porosity parameter.
Originality/value
The uniqueness of this research work is the numerical evaluation of MHD honeycomb-structured graphene nanofluid flow within two squeezed parallel plates under Joule dissipation and solar thermal radiation impacts. Furthermore, regression models are devised to forecast the correlation between the rate of thermal heat transmission and persistent flow parameters.
Details
Keywords
Ali Raza, Umair Khan, Aurang Zaib, Anuar Ishak and Syed Modassir Hussain
This article identifies hybrid nanofluids and industrial thermal engineering devices as significant sources of solar energy. In this study, various nanoparticles suspended in base…
Abstract
Purpose
This article identifies hybrid nanofluids and industrial thermal engineering devices as significant sources of solar energy. In this study, various nanoparticles suspended in base fluids such as water (
Design/methodology/approach
We have utilized the fractal fractional operator definition, the quickest and most advanced fractional approach, to address the problems with the hybrid nanofluid suspension. The integral transform scheme, i.e. the Laplace transform, converts the governing equations into a fractional form before various numerical methods are applied to solve the problem. Further, some numerical schemes to address the Laplace inverse are also utilized.
Findings
The fractional effects on flow rate and heat transfer are evident at varying time intervals. Consequently, we conclude that as the fractal constraints increase, the momentum and heat profiles decelerate. Furthermore, all necessary conditions are satisfied, resulting in the momentum and temperature fields decreasing near the plate and increasing over time. Additionally, the water-based (
Practical implications
The findings could be very useful in enhancing the efficiency of thermal systems. These findings align more accurately with conventional solutions and can be used to build and optimize various heat management strategies.
Originality/value
The primary goals of this research are to examine the thermal and flow properties of hybrid nanofluids for manufacturing purposes of thermal engineering equipment utilizing fractal fractional definition. Further, to improve thermal system productivity by applying sophisticated fractional techniques to better and maximize heat and momentum transmission in these hybrid nanofluid solutions