Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 28 July 2021

Navin Kumar, R.S. Walia and Surjit Angra

The aim of the present study is to find the tribological properties of newly developed polyester-based hybrid glass-jute fibre reinforced plastic composites loaded with different…

64

Abstract

Purpose

The aim of the present study is to find the tribological properties of newly developed polyester-based hybrid glass-jute fibre reinforced plastic composites loaded with different weight per cent of hybrid filler particles were investigated under a dry sliding medium from room temperature to 75°C.

Design/methodology/approach

The study was carried out using a pin-on-disc wear test set-up. The design of experiments was carried out in a controlled way using a central composite design based on response surface methodology to observe the effect of various parameters i.e. sliding velocity, sliding distance, the temperature of counterface and different applied load conditions during dry-sliding.

Findings

The maximum wear resistance was found at 9 Wt% loading of filler, 4 ms-1 sliding velocity, 30 N applied load, 54°C temperature of the counterface and 1,100 m sliding distance condition. Optimum values of hybrid filler loading, sliding velocity, applied load, the temperature of the counterface and sliding distance for the minimum coefficient of friction value and minimum friction force are 9 Wt%, 4 ms−1, 30 N, 54° C, 1,100 m and 12 Wt%, 3 ms−1, 20 N, 59°C and 1,100 m, respectively. The worn surface morphology was studied using scanning electron microscope, for wear dominant mechanisms.

Originality/value

The tribological properties of newly developed polyester-based hybrid glass-jute fibre reinforced plastic composites loaded with different weight % of hybrid filler particles, were investigated under dry sliding medium from room temperature to 75°C has not been attempted yet.

Details

World Journal of Engineering, vol. 19 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 5 February 2021

Navin Kumar, Ravinderjit Singh Walia and Surjit Angra

The purpose of this study is to develop jute-glass hybrid fibre reinforced polyester-based bio-composites using an indigenously developed pultrusion set-up and to present a…

158

Abstract

Purpose

The purpose of this study is to develop jute-glass hybrid fibre reinforced polyester-based bio-composites using an indigenously developed pultrusion set-up and to present a detailed discussion on their mechanical characterization.

Design/methodology/approach

The work was carried out to observe the hybridization effect of natural and synthetic fibres in combination with hybrid fillers loading mainly on strength and other properties. The used hybrid fillers were a combination of 9 Wt.% of carbon black%, 6 Wt.% of eggshell ash powder and 6 Wt.% of coconut coir ash powder. A lab-based developed pultrusion set-up was used to develop these hybrid GJFRP composites of 1,500 mm length. The developed composites were tested for tensile strength, compressive strength and impact strength.

Findings

The maximum tensile, compressive and impact strength obtained are 88.37 MPa, 56.13 MPa and 731.91 J/m from 9 Wt.%, 9 Wt.% and 0 Wt.% of hybrid fillers loading, respectively. Breaking energy was found maximum as 7.31 J in hybrid glass-jute hybrid fibre reinforced plastic composites with no filler loading and it was observed that filler loading was decreasing the impact strength of developed hybrid composites. Shrinkage and its variations in the diameter of the finally developed cylindrical shape composites were observed after cooling and solidification. Scanning electron microscopy was used to observe the internal cracks, bonding of fibres and resin, voids, etc.

Originality/value

Development of hybrid filler based novel eco-friendly bio-composites and its experimental investigation on the impact strength, tensile strength and compressive strength has not been attempted yet.

Details

World Journal of Engineering, vol. 18 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 10 October 2023

Dinesh Kumar, Satnam Singh and Surjit Angra

This study aims to investigate the corrosion behavior of stir-cast hybrid aluminum composite reinforced with CeO2 and graphene nanoplatelets (GNPs) nanoparticulates used as…

64

Abstract

Purpose

This study aims to investigate the corrosion behavior of stir-cast hybrid aluminum composite reinforced with CeO2 and graphene nanoplatelets (GNPs) nanoparticulates used as cylinder liner material in the engines (automotive, aerospace and aircraft industries).

Design/methodology/approach

The composites were prepared using the stir-casting technique, and their microstructure and corrosion behavior was evaluated using scanning electron microscopy (SEM) and potentiodynamic polarization test, respectively.

Findings

The results showed that the addition of CeO2 and GNPs improved the corrosion resistance of the composites, and the optimal combination of these two nanoparticles was found to be 3 wt.% CeO2 and 3 wt.% GNPs. The enhanced corrosion resistance was attributed to the formation of a protective layer on the surface of the composite, as well as the effective dispersion and uniform distribution of nanoparticles in the matrix. The 0.031362 was noted as the lowest corrosion rate (mmpy) and was noticed in 94% Al-6061 alloy + (3 Wt.% CeO2 + 3 Wt.% GNPs) sample at room temperature and at elevated temperatures; the corrosion rate (mmpy) was observed as 0.0601 and 0.0636 at 45 °C and 75 °C, respectively.

Originality/value

In the vast majority of the published research publications, either cerium oxide or graphene nanoplatelets were utilized as a single reinforcement or in conjunction with other types of reinforcement such as alumina, silicon carbide, carbon nano-tubes, tungsten carbide, etc., but on the combination of the CeO2 and GNPs as reinforcements have very less literatures with 2 wt.% each only. The prepared hybrid aluminum composite (reinforcing 1 wt.% to 3 wt.% in Al-6061 alloy) was considered for replacing the cylinder liner material in the piston-cylinder arrangement of engines.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 21 August 2023

Dinesh Kumar, Surjit Angra and Satnam Singh

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications…

73

Abstract

Purpose

This research outlines the development and characterization of advanced composite materials and their potential applications in the aerospace industry for interior applications. Advanced composites, such as carbon-fiber-reinforced polymers and ceramic matrix composites, offer significant advantages over traditional metallic materials in terms of weight reduction, stiffness and strength. These materials have been used in various aerospace applications, including aircraft, engines and thermal protection systems.

Design/methodology/approach

The development of design of experiment–based hybrid aluminum composites using the stir-casting technique has further enhanced the performance and cost-effectiveness of these materials. The design of the experiment was followed to fabricate hybrid composites with nano cerium oxide (nCeO2) and graphene nanoplatelets (GNPs) as reinforcements in the Al-6061 matrix.

Findings

The Al6061 + 3% nCeO2 + 3% GNPs exhibited a high hardness of 119.6 VHN. The ultimate tensile strength and yield strength are 113.666 MPa and 73.08 MPa, respectively. A uniform distribution of reinforcement particulates was achieved with 3 Wt.% of each reinforcement in the matrix material, which is analyzed using scanning electron microscopy. Fractography revealed that brittle and ductile fractures caused the failure of the fractured specimens in the tensile test.

Practical implications

The manufactured aluminum composite can be applied in a range of exterior and interior structural parts like wings, wing boxes, motors, gears, engines, antennas, floor beams, etc. The fan case material of the GEnx engine (currently using carbon-fiber reinforcement plastic) for the Boeing 7E7 can be another replacement with manufactured hybrid aluminum composite, which predicts weight savings per engine of close to 120 kg.

Originality/value

The development of hybrid reinforcements, where two or more types of reinforcements are used in combination, is also a novel approach to improving the properties of these composites. Advanced composite materials are known for their high strength-to-weight ratio. If the newly developed composite material demonstrates superior properties, it can potentially be used to replace traditional materials in aircraft manufacturing. By reducing the weight of aircraft structures, fuel efficiency can be improved, leading to reduced operating costs and environmental impact. This allows for a more customized solution for specific application requirements and can lead to further advancements in materials science and technology.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 4 of 4
Per page
102050