Suresh Sampath, Zahira Rahiman, Shafeeque Ahmed Kalavai, Bharanigha Veerasamy and Saad Mekhilef
This study aims to present a modified interleaved boost converter (MIBC) topology for improving the reliability and efficiency of power electronic systems.
Abstract
Purpose
This study aims to present a modified interleaved boost converter (MIBC) topology for improving the reliability and efficiency of power electronic systems.
Design/methodology/approach
The MIBC topology was implemented with two parallel converters, operated with a −180 degree phase shift. Using this methodology, ripples are reduced. The state-space model was analysed with a two-switch MIBC for different modes of operation. The simulation was carried out and validated using a hardware prototype.
Findings
The performance of the proposed MIBC shows better output voltage, current and power than the interleaved boost converter (IBC) for the solar PV array. The output power of the proposed converter is 1.353 times higher than that of existing converters, such as boost converter (BC) and IBC. The output power of the four-phase IBC is 30 kW, whereas that of the proposed two-phase MIBC is 40.59 kW. The efficiency of MIBC was better than that of IBC (87.01%). By incorporating interleaved techniques, the total inductor current is reduced by 29.60% compared with the existing converter.
Practical implications
The proposed MIBC can be used in a grid-connected system with an inverter circuit for DC-to-AC conversion, electric vehicle speed control, power factor correction circuit, high-efficiency converters and battery chargers.
Originality/value
The work presented in this paper is a modified version of IBC. This modified MIBC was modelled using the state-space approach. Furthermore, the state-space model of a two-phase MIBC was implemented using a Simulink model, and the same was validated using a hardware setup.
Details
Keywords
M. Vijaya Kumar, P. Sampath, S. Suresh, S.N. Omkar and Ranjan Ganguli
This paper seeks to present a feedback error learning neuro‐controller for an unstable research helicopter.
Abstract
Purpose
This paper seeks to present a feedback error learning neuro‐controller for an unstable research helicopter.
Design/methodology/approach
Three neural‐aided flight controllers are designed to satisfy the ADS‐33 handling qualities specifications in pitch, roll and yaw axes. The proposed controller scheme is based on feedback error learning strategy in which the outer loop neural controller enhances the inner loop conventional controller by compensating for unknown non‐linearity and parameter uncertainties. The basic building block of the neuro‐controller is a nonlinear auto regressive exogenous (NARX) input neural network. For each neural controller, the parameter update rule is derived using Lyapunov‐like synthesis. An offline finite time training is used to provide asymptotic stability and on‐line learning strategy is employed to handle parameter uncertainty and nonlinearity.
Findings
The theoretical results are validated using simulation studies based on a nonlinear six degree‐of‐freedom helicopter undergoing an agile maneuver. The neural controller performs well in disturbance rejection is the presence of gust and sensor noise.
Practical implications
The neuro‐control approach presented in this paper is well suited to unmanned and small‐scale helicopters.
Originality/value
The study shows that the neuro‐controller meets the requirements of ADS‐33 handling qualities specifications of a helicopter.
Details
Keywords
The purpose of this paper is to discuss published research in rotorcraft which has taken place in India during the last ten years. The helicopter research is divided into the…
Abstract
Purpose
The purpose of this paper is to discuss published research in rotorcraft which has taken place in India during the last ten years. The helicopter research is divided into the following parts: health monitoring, smart rotor, design optimization, control, helicopter rotor dynamics, active control of structural response (ACSR) and helicopter design and development. Aspects of health monitoring and smart rotor are discussed in detail. Further work needed and areas for international collaboration are pointed out.
Design/methodology/approach
The archival journal papers on helicopter engineering published from India are obtained from databases and are studied and discussed. The contribution of the basic research to the state‐of‐the‐art in helicopter engineering science is brought out.
Findings
It is found that strong research capabilities have developed in rotor system health and usage monitoring, rotor blade design optimization, ACSR, composite rotor blades and smart rotor development. Furthermore, rotorcraft modeling and analysis aspects are highly developed with considerable manpower available and being generated in these areas.
Practical implications
Two helicopter projects leading to the “advanced light helicopter” and “light combat helicopter” have been completed by Hindustan Aeronautics Ltd These helicopter programs have benefited from the basic research and also provide platforms for further basic research and deeper industry academic collaborations. The development of well‐trained helicopter engineers is also attractive for international helicopter design and manufacturing companies. The basic research done needs to be further developed for practical and commercial applications.
Originality/value
This is the first comprehensive research on rotorcraft research in India, an important emerging market, manufacturing and sourcing destination for the industry.
Details
Keywords
Antoni Kopyt, Sebastian Topczewski, Marcin Zugaj and Przemyslaw Bibik
The purpose of this paper is to elaborate and develop an automatic system for automatic flight control system (AFCS) performance evaluation. Consequently, the developed AFCS…
Abstract
Purpose
The purpose of this paper is to elaborate and develop an automatic system for automatic flight control system (AFCS) performance evaluation. Consequently, the developed AFCS algorithm is implemented and tested in a virtual environment on one of the mission task elements (MTEs) described in Aeronautical Design Standard 33 (ADS-33) performance specification.
Design/methodology/approach
Control algorithm is based on the Linear Quadratic Regulator (LQR) which is adopted to work as a controller in this case. Developed controller allows for automatic flight of the helicopter via desired three-dimensional trajectory by calculating iteratively deviations between desired and actual helicopter position and multiplying it by gains obtained from the LQR methodology. For the AFCS algorithm validation, the objective data analysis is done based on specified task accomplishment requirements, reference trajectory and actual flight parameters.
Findings
In the paper, a description of an automatic flight control algorithm for small helicopter and its evaluation methodology is presented. Necessary information about helicopter dynamic model is included. The test and algorithm analysis are performed on a slalom maneuver, on which the handling qualities are calculated.
Practical implications
Developed automatic flight control algorithm can be adapted and used in autopilot for a small helicopter. Methodology of evaluation of an AFCS performance can be used in different applications and cases.
Originality/value
In the paper, an automatic flight control algorithm for small helicopter and solution for the validation of developed AFCS algorithms are presented.
Details
Keywords
M. Vijaya Kumar, Prasad Sampath, S. Suresh, S.N. Omkar and Ranjan Ganguli
This paper aims to present the design of a stability augmentation system (SAS) in the longitudinal and lateral axes for an unstable helicopter.
Abstract
Purpose
This paper aims to present the design of a stability augmentation system (SAS) in the longitudinal and lateral axes for an unstable helicopter.
Design/methodology/approach
The feedback controller is designed using linear quadratic regulator (LQR) control with full state feedback and LQR with output feedback approaches. SAS is designed to meet the handling qualities specification known as Aeronautical Design Standard (ADS‐33E‐PRF). A helicopter having a soft inplane four‐bladed hingeless main rotor and a four‐bladed tail rotor with conventional mechanical controls is used for the simulation studies. In the simulation studies, the helicopter is trimmed at hover, low speeds and forward speeds flight conditions. The performance of the helicopter SAS schemes are assessed with respect to the requirements of ADS‐33E‐PRF.
Findings
The SAS in the longitudinal axis meets the requirement of the Level 1 handling quality specifications in hover and low speed as well as for forward speed flight conditions. The SAS in the lateral axis meets the requirement of the Level 2 handling quality specifications in both hover and low speed as well as for forward speed flight conditions. The requirements of the inter axis coupling is also met and shown for the coupled dynamics case. The SAS in lateral axis may require an additional control augmentation system or adaptive control to meet the Level 1 requirements.
Originality/value
The study shows that the design of a SAS using LQR control algorithm with full state and output feedbacks can be used to meet ADS‐33 handling quality specifications.
Details
Keywords
The purpose of this paper is to present fault tolerant control of a quadrotor based on the enhanced proportional integral derivative (PID) structure in the presence of one or more…
Abstract
Purpose
The purpose of this paper is to present fault tolerant control of a quadrotor based on the enhanced proportional integral derivative (PID) structure in the presence of one or more actuator faults.
Design/methodology/approach
Mathematical model of the quadrotor is derived by parameter identification of the system for the simulation of the UAV dynamics and flight control in MATLAB/Simulink. An improved PID structure is used to provide the stability of the nonlinear quadcopter system both for attitude and path control of the system. The results of the healty system and the faulty system are given in simulations, together with motor dynamics.
Findings
In this study, actuator faults are considered to show that a robust controller design handles the loss of effectiveness in motors up to some extent. For the loss of control effectiveness of 20 per cent in first and third motors, psi state follows the reference with steady state error, and it does not go unstable. Motor 1 and Motor 3 respond to given motor fault quickly. When it comes to one actuator fault, steady state errors remain in some states, but the system does not become unstable.
Originality/value
In this paper, an enhanced PID controller is proposed to keep the quadrotor stable in case of actuator faults. Proposed method demonstrates the effectiveness of the control system against motor faults.
Details
Keywords
Mingwei Sun, Zenghui Wang and Zengqiang Chen
– This paper aims to present a fast, economical and practical attitude control design approach for flight vehicles operating within wide envelopes.
Abstract
Purpose
This paper aims to present a fast, economical and practical attitude control design approach for flight vehicles operating within wide envelopes.
Design/methodology/approach
Based on a linear disturbance observer, an enhanced proportional-derivative (PD) control scheme is proposed. Utilizing the data from the onboard gyro, the observer can treat the entire response of the system, with the exception of the control term, as a disturbance, and use the estimation of the disturbance to cancel out this response and thereby to effectively simplify the control channel. Using the stability margin tester, the explicit graphical tuning rules are given in a consistent way for the longitudinal dynamics based on the induction method. Mathematical simulations are performed for a highly maneuverable flight vehicle to test the proposed method, which are compared with the traditional PD and H8 control algorithms.
Findings
The proposed strategy for attitude control can be reformulated as a static-dynamic control algorithm and the robust synthesis method can be employed to determine the control parameters according to a specific performance configuration. The remarkable control performance robustness can be achieved as shown in the comparative simulations.
Practical implications
There is a sole parameter, steady gain, needed to be scheduled and it can be estimated with a high accuracy.
Originality/value
This paper applies the linear active disturbance rejection control scheme to flight control scenario. The proposed method can reduce the design and implementation complexity of attitude control for flight vehicles operating within a wide envelope, which originates from diverse time-varying flight dynamics. The new method converts the attitude control problem to a sole parameter gain scheduling problem, and there is no complicated and time-consuming multi-dimension interpolation needed for the control parameters.
Details
Keywords
Ilker Murat Koc, Semuel Franko and Can Ozsoy
The purpose of this paper is to investigate the stability of a small scale six-degree-of-freedom nonlinear helicopter model at translator velocities and angular displacements…
Abstract
Purpose
The purpose of this paper is to investigate the stability of a small scale six-degree-of-freedom nonlinear helicopter model at translator velocities and angular displacements while it is transiting to hover with different initial conditions.
Design/methodology/approach
In this study, model predictive controller and linear quadratic regulator are designed and compared within each other for the stabilization of the open loop unstable nonlinear helicopter model.
Findings
This study shows that the helicopter is able to reach to the desired target with good robustness, low control effort and small steady-state error under disturbances such as parameter uncertainties, mistuned controller.
Originality/value
The purpose of using model predictive control for three axes of the autopilot is to decrease the control effort and to make the close-loop system insensitive against modeling uncertainties.
Details
Keywords
José Francisco Villarreal Valderrama, Luis Takano, Eduardo Liceaga-Castro, Diana Hernandez-Alcantara, Patricia Del Carmen Zambrano-Robledo and Luis Amezquita-Brooks
Aircraft pitch control is fundamental for the performance of micro aerial vehicles (MAVs). The purpose of this paper is to establish a simple experimental procedure to calibrate…
Abstract
Purpose
Aircraft pitch control is fundamental for the performance of micro aerial vehicles (MAVs). The purpose of this paper is to establish a simple experimental procedure to calibrate pitch instrumentation and classical control algorithms. This includes developing an efficient pitch angle observer with optimal estimation and evaluating controllers under uncertainty and external disturbances.
Design/methodology/approach
A wind tunnel test bench is designed to simulate fixed-wing aircraft dynamics. Key elements of the instrumentation commonly found in MAVs are characterized in a gyroscopic test bench. A data fusion algorithm is calibrated to match the gyroscopic test bench measurements and is then integrated into the autopilot platform. The elevator-angle to pitch-angle dynamic model is obtained experimentally. Two different control algorithms, based on model-free and model-based approaches, are designed. These controllers are analyzed in terms of parametric uncertainties due to wind speed variations and external perturbation because of sudden weight distribution changes. A series of experimental tests is performed in wind-tunnel facilities to highlight the main features of each control approach.
Findings
With regard to the instrumentation algorithms, a simple experimental methodology for the design of optimal pitch angle observer is presented and validated experimentally. In the context of the platform design and identification, the similitude among the theoretical and experimental responses shows that the platform is suitable for typical pitch control assessment. The wind tunnel experiments show that a fixed linear controller, designed using classical frequency domain concepts, is able to provide adequate responses in scenarios that approximate the operation of MAVs.
Research limitations/implications
The aircraft orientation observer can be used for both pitch and roll angles. However, for simultaneousyaw angle estimation the proposed design method requires further research. The model analysis considers a wind speed range of 6-18 m/s, with a nominal operation of 12 m/s. The maximum experimentally tested reference for the pitch angle controller was 20°. Further operating conditions may require more complex control approaches (e.g. scheduling, non-linear, etc.). However, this operating range is enough for typical MAV missions.
Originality/value
The study shows the design of an effective pitch angle observer, based on a simple experimental approach, which achieved locally optimum estimates at the test conditions. Additionally, the instrumentation and design of a test bench for typical pitch control assessment in wind tunnel facilities is presented. Finally, the study presents the development of a simple controller that provides adequate responses in scenarios that approximate the operation of MAVs, including perturbations that resemble package delivery and parametric uncertainty due to wind speed variations.