Suneetha Ch, Srinivasa Rao S and K.S. Ramesh
Electronic devices aid communication during new communication phases and the scope of cognitive radio networks has changed communication paradigms through efficient use of…
Abstract
Purpose
Electronic devices aid communication during new communication phases and the scope of cognitive radio networks has changed communication paradigms through efficient use of spectrums. The communication prototype of cognitive radio networks defines user roles as primary user and secondary user in the context of the spectrum allocation and use. The users who have licensed authority of the spectrum are denoted as primary users, while other eligible users who access the corresponding spectrum are secondary users.
Design/methodology/approach
The multiple factors of transmission service quality can have a negative influence due to improper scheduling of spectrum bands between primary users and secondary users. There are considerable contributions in contemporary literature concerning spectrum band scheduling under spectrum sensing. However, the majority of the scheduling models are intended to manage a limited number of transmission service quality factors. Moreover, these service quality factors are functional and derived algorithmically from the current corresponding spectrum. However, there is evidence of credible performance deficiency regarding contemporary spectrum sensing methods
Findings
This article intends to portray a fuzzy guided integrated factors-based spectrum band sharing within the spectrum used by secondary users. This study attempts to explain the significance of this proposal compared to other contemporary models.
Originality/value
This article intends to portray a fuzzy guided integrated factors-based spectrum band sharing within the spectrum used by secondary users. This study attempts to explain the significance of this proposal compared to other contemporary models.
Details
Keywords
Olumide Falodun Bidemi and M.S. Sami Ahamed
The purpose of this paper is to consider a two-dimensional unsteady Casson magneto-nanfluid flow over an inclined plate embedded in a porous medium. The novelty of the present…
Abstract
Purpose
The purpose of this paper is to consider a two-dimensional unsteady Casson magneto-nanfluid flow over an inclined plate embedded in a porous medium. The novelty of the present study is to investigate the effects of Soret–Dufour on unsteady magneto-nanofluid flow.
Design/methodology/approach
Appropriate similarity transformations are used to convert the governing non-linear partial differential equations into coupled non-linear dimensionless partial differential equations. The transformed equations are then solved using spectral relaxation method.
Findings
The effects of controlling parameters on flow profiles is discussed and depicted with the aid of graphs. Results show that as the non-Newtonian Casson nanofluid parameter increases, the fluid velocity decreases. It is found that the Soret parameter enhance the temperature profile, while Dufour parameter decreases the concentration profile close to the wall.
Originality/value
The novelty of this paper is to consider the combined effects of both Soret and Dufour on unsteady Casson magneto-nanofluid flow. The present model is in an inclined plate embedded in a porous medium which to the best of our knowledge has not been considered in the past. The applied magnetic field gives rise to an opposing force which slows the motion of the fluid. A newly developed spectral method known as spectral relaxation method (SRM) is used in solving the modeled equations. SRM is an iterative method that employ the Gauss–Seidel approach in solving both linear and non-linear differential equations. SRM is found to be effective and accurate.