Search results
1 – 2 of 2Pradnya Chabbi, Diplesh Gautam, Venkatesh Kadbur Prabhakar Rao and Sujan Yenuganti
This work measures the performance characteristics of a hemispherical resonator gyroscope (HRG) and compares it with a numerical model.
Abstract
Purpose
This work measures the performance characteristics of a hemispherical resonator gyroscope (HRG) and compares it with a numerical model.
Design/methodology/approach
This work we explore the optical and piezoelectric measurement methods to determine the resonant frequency of HRG. These experimental results are compared with their numerically obtained values. To explore the performance characteristics, the effect of varying actuation voltages on the sense mode displacement and the piezoelectric sensor output was studied in the absence of input angular rate. The structure was then subjected to range of angular rate signals, at a constant actuation voltage and the corresponding sensor response was analysed.
Findings
Experimental values of the resonant frequencies in drive and sense modes are found to be within 8% of the numerical results. The sensor output depicts a quadratic dependency on the applied angular rate, which is synchronous with the governing equations of the HRG. The experimental output is within 12% of that obtained numerically. The sensor is found to resolve upto 0.24 rad/s.
Originality/value
This work presents an in-house developed inexpensive measurement setup for static and dynamic characterization of mesoscale MEMS gyroscopes. The measurement setup can also be modified accordingly for measurement of other MEMS-based devices.
Details
Keywords
Sankalp Paliwal, Sujan Yenuganti and Manjunath Manuvinakurake
This paper aims to present the fabrication and testing of a pressure sensor integrated with Hall effect sensors and permanent magnets arranged in two configurations to measure…
Abstract
Purpose
This paper aims to present the fabrication and testing of a pressure sensor integrated with Hall effect sensors and permanent magnets arranged in two configurations to measure pressure in the range of 0–1 bar. The sensor is fabricated using stainless steel (SS) and can be used in high-temperature and highly corrosive environments. The fabricated sensor is of low cost, self-packaged and the differential arrangement helps in compensating for any ambient temperature variations.
Design/methodology/approach
The sensor deflects of a circular diaphragm with a simple rigid mechanical structure to convert the applied pressure to a Hall voltage output. Two sensor designs are proposed with a single pair of Hall sensors and magnets and a differential configuration with two Hall sensors and magnets. Two sensor designs are designed, fabricated and tested for their input–output characteristics and the results are compared.
Findings
The fabricated sensors are calibrated for 25 cycles of ascending and descending pressure in steps of 0.1 bar. Various static characteristics like nonlinearity, hysteresis and % error are estimated for both the sensor designs and compared with the existing Hall effect based pressure sensors. The differential arrangement design was found to have better characteristics as compared to the other design from the experimental data.
Originality/value
This paper focuses on fabricating and testing a novel differential Hall effect based pressure sensor. The differential arrangement of the sensor aids in the compensation of ambient temperature variations and the use of SS enables the sensor in high-temperature and highly corrosive applications. The proposed sensor is low cost, simple and self-packaged, and found to have high repeatability and good linearity compared to other similar Hall effect based pressure sensors available in the literature.
Details