Pushkar Prakash Kamble, Subodh Chavan, Rajendra Hodgir, Gopal Gote and K.P. Karunakaran
Multi-jet deposition of the materials is a matured technology used for graphic printing and 3 D printing for a wide range of materials. The multi-jet technology is fine-tuned for…
Abstract
Purpose
Multi-jet deposition of the materials is a matured technology used for graphic printing and 3 D printing for a wide range of materials. The multi-jet technology is fine-tuned for liquids with a specific range of viscosity and surface tension. However, the use of multi-jet for low viscosity fluids like water is not very popular. This paper aims to demonstrate the technique, particularly for the water-ice 3 D printing. 3 D printed ice parts can be used as patterns for investment casting, templates for microfluidic channel fabrication, support material for polymer 3 D printing, etc.
Design/methodology/approach
Multi-jet ice 3 D printing is a novel technique for producing ice parts by selective deposition and freezing water layers. The paper confers the design, embodiment and integration of various subsystems of multi-jet ice 3 D printer. The outcomes of the machine trials are reported as case studies with elaborate details.
Findings
The prismatic geometries are realized by ice 3 D printing. The accuracy of 0.1 mm is found in the build direction. The part height tends to increase due to volumetric expansion during the phase change.
Originality/value
The present paper gives a novel architecture of the ice 3 D printer that produces the ice parts with good accuracy. The potential applications of the process are deliberated in this paper.
Details
Keywords
Anand Sharma, Sourabh Shukla, Manish Thombre, Ankur Bansod and Sachin Untawale
The purpose of this study is to examine the effects of sensitization on the metallurgical characteristics of weld joints made up of austenitic stainless steel (AISI 316L) and…
Abstract
Purpose
The purpose of this study is to examine the effects of sensitization on the metallurgical characteristics of weld joints made up of austenitic stainless steel (AISI 316L) and ferritic stainless steel (AISI 430), using the gas tungsten arc welding (GTAW) process with ER316L filler wires.
Design/methodology/approach
A non-consumable tungsten electrode with a diameter of 1.6 mm was used during the GTAW procedure. The filler wire, ER316L, was selected based on the recommendation provided in literature. To explore the interconnections among the structure and properties of these weldments, the techniques including scanning electron microscopy and optical analysis have been used. In addition, the sensitization behaviour of the weldments was investigated using the double loop electrochemical potentio-kinetic reactivation (DLEPR) test.
Findings
Microstructural analyses revealed the occurrences of coarsened grains with equiaxed columnar grains and migrating grain boundaries in the weld zone. The results of the DLEPR test demonstrated that heat affected zone (HAZ) of AISI 430 was more susceptible to sensitization than HAZ of AISI 316L. Microstructure analysis also revealed the precipitation of large amounts of chromium carbide at the grain boundaries region of AISI 430 welded steel, causing more sensitization and, as a result, more failure or breaking at the side of AISI 430 weld in the dissimilar weldment of AISI 316L–AISI 430.
Originality/value
The present work has been carried out to determine the appropriate welding conditions for joining AISI 316L and AISI 430, as well as the metallurgical properties of the dissimilar weldment formed between AISI 316L and AISI 430. Owing to the difficulties in measuring the performance of these types of dissimilar joints given their unique mechanical and microstructural characteristics, research on the subject is limited.