Maria Anncy, Thadathil Varghese Joseph and Subbarama Pranesh
The problem aims to find the effects of coupled cross-diffusion in micropolar fluid oversaturated porous medium, subjected to Double-Diffusive Chandrasekhar convection.
Abstract
Purpose
The problem aims to find the effects of coupled cross-diffusion in micropolar fluid oversaturated porous medium, subjected to Double-Diffusive Chandrasekhar convection.
Design/methodology/approach
Normal mode and perturbation technique have been employed to determine the critical Rayleigh number. Non-linear analysis is carried out by deriving the Lorenz equations using truncated Fourier series representation. Heat and Mass transport are quantified by Nusselt and Sherwood numbers, respectively.
Findings
Analysis related to the effects of various parameters is plotted, and the results for the same are interpreted. It is observed from the results that the Dufour parameter and Soret parameter have an opposite influence on the system of cross-diffusion.
Originality/value
The effect of the magnetic field on the onset of double-diffusive convection in a porous medium coupled with cross-diffusion in a micropolar fluid is studied for the first time.
Details
Keywords
The main purpose of the present work is to study the multi response optimization of dissimilar friction stir welding (FSW) process parameters using Taguchi-based grey relational…
Abstract
Purpose
The main purpose of the present work is to study the multi response optimization of dissimilar friction stir welding (FSW) process parameters using Taguchi-based grey relational analysis and desirability function approach (DFA).
Design/methodology/approach
The welded sheets were fabricated as per Taguchi orthogonal array design. The effects of tool rotational speed, transverse speed and tool tilt angle process parameters on ultimate tensile strength and hardness were analyzed using grey relational analysis, and DFA and optimum parameters combination was determined.
Findings
The tensile strength and hardness values were evaluated from the welded joints. The optimum values of process parameters were estimated through grey relational analysis and DFA methods. Similar kind of optimum levels of process parameters were obtained through two optimization approaches as tool rotational speed of 1150 rpm, transverse speed of 24 mm/min and tool tilt angle of 2° are the best process parameters combination for maximizing both the tensile strength and hardness. Through these studies, it was confirmed that grey relational analysis and DFA methods can be used to find the multi response optimum values of FSW process parameters.
Research limitations/implications
In the present study, the FSW is performed with L9 orthogonal array design with three process parameters such as tool rotational speed, transverse speed and tilt angle and three levels.
Practical implications
Aluminium alloys are widely using in automotive and aerospace industries due to holding a high strength to weight property.
Originality/value
Very limited work had been carried out on multi objective optimization techniques such as grey relational analysis and DFA on friction stir welded joints made with dissimilar aluminium alloys sheets.