Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 6 September 2021

Souad Marzougui, Fateh Mebarek-Oudina, Mourad Magherbi and Ali Mchirgui

The purpose of this paper is to investigate the effects of Ha and the Nanoparticles (NP) volume fraction over the irreversibility and heat transport in Darcy–Forchheimer nanofluid…

285

Abstract

Purpose

The purpose of this paper is to investigate the effects of Ha and the Nanoparticles (NP) volume fraction over the irreversibility and heat transport in Darcy–Forchheimer nanofluid saturated lid-driven porous medium.

Design/methodology/approach

The present paper highlights entropy generation because of mixed convection for a lid-driven porous enclosure filled through a nanoliquid and submitted to a uniform magnetic field. The analysis is achieved using Darcy–Brinkman–Forchheimer technique. The set of partial differential equations governing the considered system was numerically solved using the finite element method.

Findings

The main observations are as follows. The results indicate that the movement of horizontal wall is an important factor for the entropy generation inside the porous cavity filled through Cu–water nanoliquid. The variation of the thermal entropy generation is linear through NPs volume fraction. The total entropy generation reduces when the Darcy, Hartmann and the nanoparticle volume fraction increase. The porous media and magnetic field effects reduce the total entropy generation.

Practical implications

Interest in studying thermal interactions by convective flow within a saturating porous medium has many fundamental considerations and has received extensive consideration in the literature because of its usefulness in a large variety of engineering applications, such as the energy storage and solar collectors, crystal growth, food processing, nuclear reactors and cooling of electronic devices, etc.

Originality/value

By examining the literature, the authors found that little attention has been paid to entropy generation encountered during convection of nanofluids. Hence, this work aims to numerically study entropy generation and heat transport in a lid-driven porous enclosure filled with a nanoliquid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 23 December 2020

Souad Marzougui, M. Bouabid, Fateh Mebarek-Oudina, Nidal Abu-Hamdeh, Mourad Magherbi and K. Ramesh

The purpose of this paper is to evaluate the temperature, the Dirichlet conditions have been considered to the parallel horizontal plates. The model of generalized…

236

Abstract

Purpose

The purpose of this paper is to evaluate the temperature, the Dirichlet conditions have been considered to the parallel horizontal plates. The model of generalized Brinkman-extended Darcy with the Boussinesq approximation is considered and the governing equations are computed by COMSOL multiphysics.

Design/methodology/approach

In the current study, the thermodynamic irreversible principle is applied to study the unsteady Poiseuille–Rayleigh–Bénard (PRB) mixed convection in a channel (aspect ratio A = 5), with the effect of a uniform transverse magnetic field.

Findings

The effects of various flow parameters on the fluid flow, Hartmann number (Ha), Darcy number (Da), Brinkman number (Br) and porosity (ε), are presented graphically and discussed. Numerical results for temperature and velocity profiles, entropy generation variations and contour maps of streamlines, are presented as functions of the governing parameter mentioned above. Basing on the generalized Brinkman-extended Darcy formulation, which allows the satisfaction of the no-slip boundary condition on a solid wall, it is found that the flow field and then entropy generation is notably influenced by the considering control parameters. The results demonstrate that the flow tends toward the steady-state with four various regimes, which strongly depends on the Hartman and Darcy numbers variations. Local thermodynamic irreversibilities are more confined near the active top and bottom horizontal walls of the channel when increasing the Da and decreasing the Hartmann number. Entropy generation is also found to be considerably affected by Brinkman number variation.

Originality/value

In the present work, we are presenting our investigations on the influence of a transverse applied external magnetohydrodynamic on entropy generation at the unsteady laminar PRB flow of an incompressible, Newtonian, viscous electrically conducting binary gas mixture fluid in porous channel of two horizontal heated plates. The numerical solutions for the liquid velocity, the temperature distribution and the rates of heat transport and entropy generation are obtained and are plotted graphically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Available. Open Access. Open Access

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 3 of 3
Per page
102050