Search results
1 – 3 of 3Jing Yu, Jiawei Guo, Qi Zhang, Lining Xing and Songtao Lv
To develop an automated system for identifying and repairing cracks in asphalt pavements, addressing the urgent need for efficient pavement maintenance solutions amidst increasing…
Abstract
Purpose
To develop an automated system for identifying and repairing cracks in asphalt pavements, addressing the urgent need for efficient pavement maintenance solutions amidst increasing workloads and decreasing budgets.
Design/methodology/approach
The research was conducted in two main stages: Crack identification: Utilizing the U-Net deep learning model for pixel-level segmentation to identify pavement cracks, followed by morphological operations such as thinning and spur removal to refine the crack trajectories. Automated crack repair path planning: Developing an enhanced hybrid ant colony greedy algorithm (EAC-GA), which integrates the ant colony (AC) algorithm, greedy algorithm (GA) and three local enhancement strategies – PointsExchange, Cracks2OPT and Nearby Cracks 2OPT – to plan the most efficient repair paths with minimal redundant distance.
Findings
The EAC-GA demonstrated significant advantages in solution quality compared to the GA, the traditional AC and the AC-GA. Experimental validation on repair areas with varying numbers of cracks (16, 26 and 36) confirmed the effectiveness and scalability of the proposed method.
Originality/value
The originality of this research lies in the application of advanced deep learning and optimization algorithms to the specific problem of pavement crack repair. The value is twofold: Technological innovation in the field of pavement maintenance, offering a more efficient and automated approach to a common and costly issue. The potential for significant economic and operational benefits, particularly in the context of reduced maintenance budgets and increasing maintenance demands.
Details
Keywords
Wei Du, Lei Luo, Songtao Wang, Jian Liu and Bengt Ake Sunden
The purpose of this study is to enhance the thermal performance in the labyrinth channel by different ribs shape. The labyrinth channel is a relatively new cooling structure to…
Abstract
Purpose
The purpose of this study is to enhance the thermal performance in the labyrinth channel by different ribs shape. The labyrinth channel is a relatively new cooling structure to decrease the temperature near the trailing region of gas turbine.
Design/methodology/approach
Based on the geometric similarity, a simplified geometric model is used. The k − ω turbulence model is used to close the Navier–Stokes equations. Five rib shapes (one rectangular rib, two arched ribs and two trapezoid ribs) and five Reynolds numbers (10,000 to 50,000) are considered. The Nusselt number, flow structure and friction factor are analyzed.
Findings
Nusselt number is tightly related to the rib shape in the labyrinth channel. The different shapes of the ribs result in different horseshoe vortex and wake region. In general, the arched rib brings the highest Nusselt number and friction factor. The Nusselt number is increased by 15.8 per cent compared to that of trapezoidal ribs. High Nusselt number is accompanied by the high friction factor in a labyrinth channels. The friction factor is increased by 64.6 per cent compared to rectangular ribs. However, the rib shape has a minor effect on the overall thermal performance.
Practical implications
This study is useful to protect the trailing region of advanced gas turbine.
Originality/value
This paper presents the flow structure and heat transfer characteristics in a labyrinth channel with different rib shapes.
Details
Keywords
Lei Luo, Yifeng Zhang, Chenglong Wang, Songtao Wang and Bengt Ake Sunden
The pin fin is applied into a Lamilloy cooling structure which is broadly used in the leading edge region of the modern gas turbine vane. The purpose of this paper is to…
Abstract
Purpose
The pin fin is applied into a Lamilloy cooling structure which is broadly used in the leading edge region of the modern gas turbine vane. The purpose of this paper is to investigate effects of the layout, diameter and shape of pin fins on the flow structure and heat transfer characteristics in a newly improved Lamilloy structure at the leading edge region of a turbine vane.
Design/methodology/approach
A numerical method is applied to investigate effects of the layout, diameter and shape of pin fins on the flow structure and heat transfer characteristics in a newly improved Lamilloy structure at the leading edge of a turbine vane. The diverse locations of pin fins are Lp = 0.35, 0.5, 0.65. The diameter of the pin fins varies from 8 mm to 32 mm. Three different ratios of root to roof diameter for pin fins are also investigated, i.e. k = 0.5, 1, 2. The Reynolds number ranges from 10,000 and 50,000. Results of the flow structures, heat transfer on the target surface and pin fin surfaces, and friction factor are studied.
Findings
The heat transfer on the pin fin surface gradually decreases and then increases as the location of the pin fins increases. Increasing the diameter of the pin fins causes the heat transfer on the pin fin surface to gradually increase, while a lower value of the friction factor occurs. Besides, the heat transfer on the pin fin surface at a small root diameter increases remarkably, but a slight heat transfer penalty is found at the target surface. It is also found that both the Reynolds analogy performance and the thermal performance are increased compared to the baseline whose diameter and normalized location of pin fins are set as 16 and 0.5 mm, respectively.
Social implications
The models provide a basic theoretical study to deal with nonuniformity of the temperature field for the turbine vane leading edge. The investigation also provides a better understanding of the heat transfer and flow characteristics in the leading edge region of a modern turbine vane.
Originality/value
This is a novel method to adopt pin fins into a Lamilloy cooling structure with curvature. It presents that the heat transfer of the pin fin surface in a pin-fin Lamilloy cooling structure with curvature can be significantly increased by changing the parameters of the pin fins which may lead to various flow behavior. In addition, the shape of the pin fin also shows great influence on the heat transfer and flow characteristics. However, the heat transfer of the target surface shows a small sensitivity to different layouts, diameter and shape of pin fin.
Details