Błażej Nycz, Roman Przyłucki, Łukasz Maliński and Slawomir Golak
The study aims to maximize the efficiency of the process under a given current condition by changing the geometry of the coil. This optimization is economically justified by…
Abstract
Purpose
The study aims to maximize the efficiency of the process under a given current condition by changing the geometry of the coil. This optimization is economically justified by reducing the cost of the process.
Design/methodology/approach
The paper presents the author’s optimization process for a case requiring long computational time. The presented optimization is based on a 3D simulation model of an electromagnetic levitation melting (ELM) inductor.
Findings
The result of the work is to find a suboptimal inductor geometry for ELM.
Research limitations/implications
To solve the presented problem, a procedure using an evolutionary algorithm was relied on. As for all global search algorithms, it is possible to find a local optimum instead of a global one.
Practical implications
The new inductor geometry for ELM, thanks to its higher process efficiency for its class of inductors, can lead to the reduction of the costs of the process by using this type of equipment.
Originality/value
The novelty of the article is a proprietary optimization algorithm and the use of an advanced 3D simulation model which was necessary due to the lack of symmetry of the ELM inductor.
Details
Keywords
Slawomir Golak and Mirosław Kordos
The attractiveness of functionally graded composites lies in the possibility of a gradual spatial change of their properties such as hardness, strength and wear resistance. The…
Abstract
Purpose
The attractiveness of functionally graded composites lies in the possibility of a gradual spatial change of their properties such as hardness, strength and wear resistance. The purpose of this paper is to discuss the use of electromagnetic buoyancy to separate the reinforcement particles during the casting process of such a composite.
Design/methodology/approach
The basic problem encountered in the process of casting composites is to obtain electromagnetic buoyancy and simultaneously to avoid a flow of the liquid metal which destroys the desired composite structure. In this paper the authors present the methodology of numerical optimization of inductor geometry in order to homogenize the electromagnetic force field distribution.
Findings
The optimization method based on searching the solution subspace created by applying knowledge of the modelled process physics proved better than the universal local optimization methods. These results were probably caused by the complex shape of the criterion function hypersurface characterized by the presence of local minima.
Practical implications
Due to their characteristics, functionally graded composites are of great interest to the automotive, aerospace and defense industries. In the case of metal matrix composites casting techniques (as the presented one) are the most effective methods of producing functionally graded materials.
Originality/value
The paper presents the optimization of a new process of casting functionally graded composites in a low-frequency alternating electromagnetic field. The process involves problems that did not occur previously in the area of electromagnetic processing of materials. The paper proposes the use of special design of inductors to homogenize the electromagnetic force field.