Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 2 January 2023

Javad Rahmani Fard, Saadat Jamali Arand and Siroos Hemmati

In this paper, an improved multiobjective particle swarm optimization (PSO) algorithm is proposed to optimize a three-phase, 12-slot, 19-pole, yokeless axial-field flux-switching…

202

Abstract

Purpose

In this paper, an improved multiobjective particle swarm optimization (PSO) algorithm is proposed to optimize a three-phase, 12-slot, 19-pole, yokeless axial-field flux-switching permanent magnet (YASA-AFFSPM) motor.

Design/methodology/approach

Based on the structural characteristics of the YASA-AFFSPM, a mathematical model is established to calculate the main size of the YASA-AFFSPM motor. The split ratio, stator axial length, sandwiching pole angle, rotor pole angle, PM arc and number of conductors per slot are selected as optimization variables. Also, the efficiency, power factor, cogging torque and average torque are considered as the optimization objectives. The objectives are optimized by combining the improved multiobjective PSO algorithm with electromagnetic calculation.

Findings

Based on the proposed algorithm, the investigated motor is optimized. The on-load efficiency, power factor and average torque of the motor performance have increased by 0.87%, 3.13% and 10.39%, respectively. Moreover, the cogging torque and slot fill factor have undergone decreases of 8.57% and 3.34%, respectively. Finally, the effectiveness of the algorithm is verified using experiment results.

Originality/value

So far, no comprehensive report has been observed on the optimization of the YASA-AFFSPM motor using evolutionary algorithms and the study of the effect of the motor parameters. Therefore, in this paper, the authors decided to investigate the effect of YASA-AFFSPM motor parameters and improve motor performance with the improved PSO method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1
Per page
102050