Search results

1 – 1 of 1
Article
Publication date: 29 August 2024

Yunxiang Li, Yunfei Ai, Jinzhou Zou, Liangyu Liu, Chengjian Liu, Siheng Fu, Dehua Zou and Wang Wei

By analyzing the shortcomings of existing insulator robots, a novel ultra high voltage (UHV) insulator climbing robot, which could transfer between adjacent insulator strings, is…

Abstract

Purpose

By analyzing the shortcomings of existing insulator robots, a novel ultra high voltage (UHV) insulator climbing robot, which could transfer between adjacent insulator strings, is proposed for operation on 800KV multiple-string insulators. An extended inchworm-like configuration was chosen and a stable gripping claw suitable for the insulator string was designed to enable the robot to multiple-string insulators. Then a set of nonheuristic structural parameters that can influence energy consumption was chosen to formulate a nonlinear optimization problem based on the configuration, which improved the energy efficiency of the robot during progressing along a string of insulator.

Design/methodology/approach

The purpose of this paper is to design an insulator climbing robot for operation on UHV multiple-string insulators, which could transfer between adjacent insulator strings and progressed along a string of insulator with high energy efficiency.

Findings

A physical prototype was constructed that can operate at the speed of six pieces per minute (approximately 1.44 meters per minute) on a single string and complete transference between adjacent strings in 45 s. The energy consumption of joints during progressed along a string of insulator had been reduced by 38.8% with the optimized parameters, demonstrating the consistency between the experimental and simulation results.

Originality/value

An insulator climbing robot for operation on UHV multiple-string insulators has been developed with energy consumption optimization design. The robot can transfer between adjacent insulator strings and progressed along a string of insulator with high energy efficiency. The CLIBOT could be expanded to detect or clean the insulators with similar specification.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 1 of 1