Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 5 October 2018

Qing Xu and Shuzhi Sam Ge

The purpose of this paper is to propose an adaptive control for a redundant robot manipulator interacting physically with the environment, especially with the existence of humans…

260

Abstract

Purpose

The purpose of this paper is to propose an adaptive control for a redundant robot manipulator interacting physically with the environment, especially with the existence of humans, on its body.

Design/methodology/approach

The redundant properties of the robot manipulator are used and a reference velocity variable is introduced to unify the operation-space tracking control and the null-space impedance control under one common framework. Neural networks are constructed to deal with unstructured and unmodeled dynamic nonlinearities. Lyapunov function is used during the course of control design and simulation studies are carried out to further illustrate the effectiveness of the proposed strategies.

Findings

Satisfying tracking performance in the operation-space and compliance behavior in the null-space of the redundant robot manipulator are ensured simultaneously.

Originality/value

The design procedure of redundant robot manipulators control can be greatly simplified, and the framework of multi-priority control can be transformed into a joint-space velocity tracking problem via the introducing of a reference velocity variable.

Details

Assembly Automation, vol. 38 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Access Restricted. View access options
Article
Publication date: 1 October 2019

Yanan Li, Keng Peng Tee, Rui Yan and Shuzhi Sam Ge

This paper aims to propose a general framework of shared control for human–robot interaction.

551

Abstract

Purpose

This paper aims to propose a general framework of shared control for human–robot interaction.

Design/methodology/approach

Human dynamics are considered in analysis of the coupled human–robot system. Motion intentions of both human and robot are taken into account in the control objective of the robot. Reinforcement learning is developed to achieve the control objective subject to unknown dynamics of human and robot. The closed-loop system performance is discussed through a rigorous proof.

Findings

Simulations are conducted to demonstrate the learning capability of the proposed method and its feasibility in handling various situations.

Originality/value

Compared to existing works, the proposed framework combines motion intentions of both human and robot in a human–robot shared control system, without the requirement of the knowledge of human’s and robot’s dynamics.

Details

Assembly Automation, vol. 40 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Access Restricted. View access options
Article
Publication date: 1 May 2019

Xinde Li, Pei Li, Mohammad Omar Khyam, Xiangheng He and Shuzhi Sam Ge

As an automatic welding process may experience some disturbances caused by, for example, splashes and/or welding fumes, misalignments/poor positioning, thermally induced…

182

Abstract

Purpose

As an automatic welding process may experience some disturbances caused by, for example, splashes and/or welding fumes, misalignments/poor positioning, thermally induced deformations, strong arc lights and diversified welding joints/grooves, precisely identifying the welding seam has a great influence on the welding quality. This paper aims to propose a robust method for identifying this seam based on cross-modal perception.

Design/methodology/approach

First, after a welding image obtained from a structured-light vision sensor (here laser and vision are integrated into a cross-modal perception sensor) is filtered, in a sufficiently small area, the extended Kalman filter is used to prevent possible disturbances to search for its laser stripe. Second, to realize the extraction of the profile of welding seam, the least square method is used to fit a sequence of centroids determined by the scanning result of columns displayed on the tracking window. Third, this profile is then qualitatively described and matched using a proposed character string method.

Findings

It is demonstrated that it maintains real time and is clearly superior in terms of accuracy and robustness, though its real-time performance is not the best.

Originality/value

This paper proposes a robust method for automatically identifying and tracking a welding seam.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 3 of 3
Per page
102050