Shuixian Hu, Ruomei Wang and Fan Zhou
The purpose of this paper is to present an efficient algorithm for multi-layer garment fitting simulation based on the geometric method to solve the low time cost problem during…
Abstract
Purpose
The purpose of this paper is to present an efficient algorithm for multi-layer garment fitting simulation based on the geometric method to solve the low time cost problem during penetration detection and processing. This is more practical to design a CAD system to preview the multi-layer garment fitting effect in daily life.
Design/methodology/approach
The construction of a multi-layer garment based on existing 3D garments is a suitable method because this method is similar to the daily method of multi-layer dressing. The major problem is the penetration phenomenon between different garments because these 3D garment’s geometric shapes are constructed in different situations. In this paper, an efficient algorithm of multi-layer garment simulation is reported. A face-face intersection detection algorithm is designed to detect the penetration region between multi-layer garments fast and a geometric penetration processing algorithm is presented to solve the penetration phenomenon during multi-layer garment simulation.
Findings
This method can quickly detect the penetration between faces, and then deal with the penetration for multi-layer garment construction. Experimental results show that this method can not only remove the penetration but basically maintain the trend of wrinkles efficiently. At the same time, the garments used in the experiment have almost more than 5,800 faces, but the resolving time is under five seconds.
Originality/value
The main originalities of the multi-layer garment virtual fitting algorithm based on the geometric method are highly efficient both in terms of time cost and fitting effect. Based on this method, the technology of multi-layer garment virtual fitting can be used to design a novel CAD system to preview the multi-layer garment fitting effect in real time. This is a pressing requirement of virtual garment applications.