Search results
1 – 1 of 1Abdelraheem M. Aly and Shreen El-Sapa
The purpose of this paper is to work out the magnetic forces on heat/mass transmission in a cavity filled with a nanofluid and wavy porous medium by applying the incompressible…
Abstract
Purpose
The purpose of this paper is to work out the magnetic forces on heat/mass transmission in a cavity filled with a nanofluid and wavy porous medium by applying the incompressible smoothed particle hydrodynamics (ISPH) method.
Design/methodology/approach
The cavity is filled by a nanofluid and an undulating layer of a porous medium. The inserted two circular cylinders are rotated around the cavity’s center by a uniform circular velocity. The outer circular cylinder has four gates, and it carries two different boundary conditions. The inner circular cylinder is carrying Th and Ch. The Lagrangian description of the dimensionless regulating equations is solved numerically by the ISPH method.
Findings
The major outcomes of the completed numerical simulations illustrated the significance of the wavy porous layer in declining the nanofluid movements, temperature and concentration in a cavity. The nanofluid movements are declining by an increase in nanoparticle parameter and Hartmann number. The variations on the boundary conditions of an outer circular cylinder are changing the lineaments of heat/mass transfer in a cavity.
Originality/value
The originality of this study is investigating the dual rotations of the cylinders on magnetohydrodynamics thermosolutal convection of a nanofluid in a cavity saturated by two wavy horizontal porous layers.
Details