Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 4 January 2016

Chao Ye, Xiufang Wen, Jia-ling Lan, Zhi-qi Cai, Pi-hui Pi, Shou-ping Xu and Yu Qian

The purpose of this paper is to modify light hollow polymer microsphere (LHPM) with titanium dioxide nanoparticles (nano-TiO2) to improve its compatibility with latex and apply…

536

Abstract

Purpose

The purpose of this paper is to modify light hollow polymer microsphere (LHPM) with titanium dioxide nanoparticles (nano-TiO2) to improve its compatibility with latex and apply the obtained nano-TiO2/LHPM composite particles in external wall thermal insulation coatings.

Design/methodology/approach

The nano-TiO2/LHPM composite particles were prepared via vigorous stirring. The morphology and chemical composition of the produced nano-TiO2/LHPM composite particles were characterized using scanning electron microscopy, energy dispersion spectrum, thermo-gravimetric analyzer and Fourier transform infrared. The performance of this new composite coating was evaluated by checking its stability, density, radiation reflectivity, thermal conductivity and the resulting insulation temperature difference when forming coating film.

Findings

It was found that a 9:1 mass ratio of nano-TiO2/LHPM with total 10 weight per cent composite particles in the thermal insulation paint showed low density, good stability, low thermal conductivity (0.1687 W/m·K) and high insulation temperature difference (5.8°C).

Research limitations/implications

The LHPM can be modified by other nanoparticles to improve its insulation performance in thermal insulation coatings.

Practical implications

This work provides a simple, robust, but effective approach to produce new thermal insulation coatings with nano-TiO2/LHPM composite particles.

Originality/value

This method for surface modification of LHPMs is novel and the modified hollow polymer microspheres could be applied to external wall insulation coatings.

Details

Pigment & Resin Technology, vol. 45 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 1 of 1
Per page
102050