Gang Du, Weikui Wang, Shizhe Song and Shijiu Jin
The purpose of this paper is to report an investigation of the acoustic emission (AE) characteristics of the corrosion process of 304 stainless steel in acidic NaCl solution.
Abstract
Purpose
The purpose of this paper is to report an investigation of the acoustic emission (AE) characteristics of the corrosion process of 304 stainless steel in acidic NaCl solution.
Design/methodology/approach
The corrosion behavior of a specimen with constant load in acidic NaCl solution was studied, and the AE signal characteristics of the corrosion process were analyzed. Stress corrosion cracking of the specimen was detected using the AE and electrochemical noise (EN) techniques, and the acquired data were compared.
Findings
The results indicated that AE technology is very sensitive to the AE signals generated by 304 nitrogen controlled stainless steel in acidic NaCl solution. The characteristics of AE signals at different stages of the corrosion process are significantly different. Additionally, the AE test result is confirmed by the EN test results.
Originality/value
The characteristics of AE signals at different stages of the corrosion process are gained for the first time, which is an important guide by which to distinguishing different stages of corrosion.
Details
Keywords
Yanan Luo, Qizheng Li and Shizhe Song
The purpose of this investigation was to study the erosion-corrosion behavior of ZHMn55-3-1 copper alloy in seawater (flow velocity from 0 to 0.8 m/s, sediment content from 0 to…
Abstract
Purpose
The purpose of this investigation was to study the erosion-corrosion behavior of ZHMn55-3-1 copper alloy in seawater (flow velocity from 0 to 0.8 m/s, sediment content from 0 to 0.15 percent), to analyze the effects of the flow velocity and sediment content on the erosion-corrosion process.
Design/methodology/approach
A simulated erosion-corrosion test system was set up. Weight loss determinations and electrochemical measurements (such as potentiostat square wave (PSW), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests) were used to study the erosion-corrosion behavior of ZHMn55-3-1 copper alloy in stagnant and flowing seawater with different sediment contents.
Findings
Under the test conditions, ZHMn55-3-1 copper alloys had good corrosion resistance to stagnant clear seawater, while increasing the flow velocity and sediment content reduced the corrosion resistance of the material. The difference in the erosion-corrosion mechanism between flow velocity and sediment content was that the former affected both the cathode process and the anode process of electrochemical corrosion, while the latter essentially affected only the anode process.
Originality/value
This paper explains the effects of flow velocity and sediment content on the erosion-corrosion behavior of ZHMn55-3-1 copper alloy in flowing seawater.
Details
Keywords
Bo Wang, Guanwei Wang, Youwei Wang, Zhengzheng Lou, Shizhe Hu and Yangdong Ye
Vehicle fault diagnosis is a key factor in ensuring the safe and efficient operation of the railway system. Due to the numerous vehicle categories and different fault mechanisms…
Abstract
Purpose
Vehicle fault diagnosis is a key factor in ensuring the safe and efficient operation of the railway system. Due to the numerous vehicle categories and different fault mechanisms, there is an unbalanced fault category problem. Most of the current methods to solve this problem have complex algorithm structures, low efficiency and require prior knowledge. This study aims to propose a new method which has a simple structure and does not require any prior knowledge to achieve a fast diagnosis of unbalanced vehicle faults.
Design/methodology/approach
This study proposes a novel K-means with feature learning based on the feature learning K-means-improved cluster-centers selection (FKM-ICS) method, which includes the ICS and the FKM. Specifically, this study defines cluster centers approximation to select the initialized cluster centers in the ICS. This study uses improved term frequency-inverse document frequency to measure and adjust the feature word weights in each cluster, retaining the top τ feature words with the highest weight in each cluster and perform the clustering process again in the FKM. With the FKM-ICS method, clustering performance for unbalanced vehicle fault diagnosis can be significantly enhanced.
Findings
This study finds that the FKM-ICS can achieve a fast diagnosis of vehicle faults on the vehicle fault text (VFT) data set from a railway station in the 2017 (VFT) data set. The experimental results on VFT indicate the proposed method in this paper, outperforms several state-of-the-art methods.
Originality/value
This is the first effort to address the vehicle fault diagnostic problem and the proposed method performs effectively and efficiently. The ICS enables the FKM-ICS method to exclude the effect of outliers, solves the disadvantages of the fault text data contained a certain amount of noisy data, which effectively enhanced the method stability. The FKM enhances the distribution of feature words that discriminate between different fault categories and reduces the number of feature words to make the FKM-ICS method faster and better cluster for unbalanced vehicle fault diagnostic.
Details
Keywords
Chunhua Liu, Ming Li, Peng Chen and Chaoyun Zhang
This study aims to solve the problems of ambiguous localization, large calculation, poor real-time and limited applicability of bolt thread defect detection.
Abstract
Purpose
This study aims to solve the problems of ambiguous localization, large calculation, poor real-time and limited applicability of bolt thread defect detection.
Design/methodology/approach
First, the acquired ultrasound image is used to acquire the larger area of the image, which is set as the compliant threaded area. Second, based on the determined coordinates of the center point in each selected region, the set of coordinates on the left and right sides of the bolts is acquired by DBSCAN method with parameters eps and MinPts, which is determined by data set dimension D and the k-distance curve. Finally, the defect detection boundary line fitting is completed using the acquired coordinate set, and the relationship between the distance from each detection point to the curve and d, which is obtained from the measurement of the standard bolt sample with known thread defect, is used to locate the bolt thread defect simultaneously.
Findings
In this paper, the bolt thread defect detection method with ultrasonic image is proposed; meanwhile, the ultrasonic image acquisition system is designed to complete the real-time localization of bolt thread defects.
Originality/value
The detection results show that the method can effectively detect bolt thread defects and locate the bolt thread defect location with wide applicability, small calculation and good real-time performance.
Details
Keywords
Xin Zhou, Wenbin Zhou, Yang Zheng Zhang, Meng-Ran Li, Haijing Sun and Jie Sun
This paper aims to study the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass.
Abstract
Purpose
This paper aims to study the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass.
Design/methodology/approach
The authors performed weight loss experiments, electrochemical experiments including the polarization curve and electrochemical impedance spectrum, corrosion morphology observation using scanning electron microscope (SEM) and atomic force microscope (AFM) and surface composition analysis via X-ray photoelectron spectroscopy (XPS) to analyze the corrosion inhibition behavior of imidazopyridine and its three derivatives on brass by using quantum chemical calculation (Gaussian 09), molecular dynamics simulation (M-S) and Langmuir adsorption isotherm.
Findings
According to the results, imidazole-pyridine and its derivatives were found to be modest or moderately mixed corrosion inhibitors; moreover, they were spontaneously adsorbed on the metal surface in a single-layer, mixed adsorption mode.
Originality/value
The corrosion inhibition properties of pyrazolo-[1,2-a]pyridine and its derivatives on brass in sulfuric acid solution were analyzed through weight loss and electrochemical experiments. Moreover, SEM and AFM were simultaneously used to observe the corrosion appearance. Furthermore, XPS was used to analyze the surface. Then, Gaussian 09 and M-S were combined along with the Langmuir adsorption isotherm to investigate the corrosion inhibition mechanism of imidazole-[1,2-a]pyridine and its derivatives.