Nan Zhang, Lichao Zhang, Senlin Wang, Shifeng Wen and Yusheng Shi
In the implementation of large-size additive manufacturing (AM), the large printing area can be established by using the tiled and fixed multiple printing heads or the single…
Abstract
Purpose
In the implementation of large-size additive manufacturing (AM), the large printing area can be established by using the tiled and fixed multiple printing heads or the single dynamic printing head moving in the x–y plane, which requires a layer decomposition after the mesh slicing to generate segmented infill areas. The data processing flow of these schemes is redundant and inefficient to some extent, especially for the processing of complex stereolithograph (STL) models. It is of great importance in improving the overall efficiency of large-size AM technics software by simplifying the redundant steps. This paper aims to address these issues.
Design/methodology/approach
In this paper, a method of directly generating segmented layered infill areas is proposed for AM. Initially, a vertices–mesh hybrid representation of STL models is constructed based on a divide-and-conquer strategy. Then, a trimming–mapping procedure is performed on sliced contours acquired from partial surfaces. Finally, to link trimmed open contours and inside-signal square corners as segmented infill areas, a region-based open contour closing algorithm is carried out in virtue of the developed data structures.
Findings
In virtue of the proposed approach, the segmented layered infill areas can be directly generated from STL models. Experimental results indicate that the approach brings us the good property of efficiency, especially for complex STL models.
Practical implications
The proposed approach can generate segmented layered infill areas efficiently in some cases.
Originality/value
The region-based layered infill area generation approach discussed here will be a supplement to current data process technologies in large-size AM, which is very suitable for parallel processing and enables us to improve the efficiency of large-size AM technics software.
Details
Keywords
Changjun Han, Chunze Yan, Shifeng Wen, Tian Xu, Shuai Li, Jie Liu, Qingsong Wei and Yusheng Shi
Selective laser melting (SLM) is an additive manufacturing process suitable for fabricating metal porous scaffolds. The unit cell topology is a significant factor that determines…
Abstract
Purpose
Selective laser melting (SLM) is an additive manufacturing process suitable for fabricating metal porous scaffolds. The unit cell topology is a significant factor that determines the mechanical property of porous scaffolds. Therefore, the purpose of this paper is to evaluate the effects of unit cell topology on the compression properties of porous Cobalt–chromium (Co-Cr) scaffolds fabricated by SLM using finite element (FE) and experimental measurement methods.
Design/methodology/approach
The Co-Cr alloy porous scaffolds constructed in four different topologies, i.e. cubic close packed (CCP), face-centered cubic (FCC), body-centered cubic (BCC) and spherical hollow cubic (SHC), were designed and fabricated via SLM process. FE simulations and compression tests were performed to evaluate the effects of unit cell topology on the compression properties of SLM-processed porous scaffolds.
Findings
The Mises stress predicted by FE simulations showed that different unit cell topologies resulted in distinct stress distributions on the bearing struts of scaffolds, whereas the unit cell size directly determined the stress value. Comparisons on the stress results for four topologies showed that the FCC unit cell has the minimum stress concentration due to its inclined bearing struts and horizontal arms. Simulations and experiments both indicated that the compression modulus and strengths of FCC, BCC, SHC, CCP scaffolds with the same cell size presented in a descending order. These distinct compression behaviors were correlated with the corresponding mechanics response on bearing struts. Two failure mechanisms, cracking and collapse, were found through the results of compression tests, and the influence of topological designs on the failure was analyzed and discussed. Finally, the cell initial response of the SLM-processed Co-Cr scaffold was tested through the in vitro cell culture experiment.
Originality/value
A focus and concern on the compression properties of SLM-processed porous scaffolds was presented from a new perspective of unit cell topology. It provides some new knowledge to the structure optimization of porous scaffolds for load-bearing bone implants.
Details
Keywords
Wei Zhu, Chunze Yan, Yunsong Shi, Shifeng Wen, Changjun Han, Chao Cai, Jie Liu and Yusheng Shi
Semi-crystalline polymers such as polyamide-12 can be used for selective laser sintering (SLS) to make near-fully dense plastic parts. At present, however, the types of…
Abstract
Purpose
Semi-crystalline polymers such as polyamide-12 can be used for selective laser sintering (SLS) to make near-fully dense plastic parts. At present, however, the types of semi-crystalline polymers suitable for SLS are critically limited. Therefore, the purpose of this paper is to investigate the processibility of a new kind of semi-crystalline polypropylene (PP) with low isotacticity for SLS process.
Design/methodology/approach
The SLS processibility of the PP powder, including particle size and shape, sintering window, degree of crystallinity and degradation temperature, was evaluated. Effects of the applied laser energy density on the surface micromorphology, density, tensile strength and thermal properties of SLS-built PP specimens were studied.
Findings
The results show that the PP powder has a nearly spherical shape, smooth surfaces, an appropriate average particle size of 63.6 μm, a broad sintering window of 21 oC and low crystalline degree of 30.4 per cent comparable to that of polyamide-12, a high degradation temperature of 381.8°C and low part bed temperature of 105°C, indicating a very good SLS processibility. The density and the tensile strength first increase with increasing laser energy density until they reach the maximum values of 0.831 g/cm3 and 19.9 MPa, respectively, at the laser energy density of 0.0458 J/mm2, and then decrease when the applied laser energy density continue to increase owing to the degradation of PP powders. The complex PP components have been manufactured by SLS using the optimum parameters, which are strong enough to be directly used as functional parts.
Originality/value
This paper provides a new knowledge for this field that low-isotacticity PPs exhibit good SLS processibility, therefore increasing material types and broadening the application of SLS technology.
Details
Keywords
Donghua Zhao, Weizhong Guo, Baibing Zhang and Feng Gao
The purpose of this paper is to review available technologies, analyse their features, propose a new approach of 3D sand mould printing based on line forming, introduce the…
Abstract
Purpose
The purpose of this paper is to review available technologies, analyse their features, propose a new approach of 3D sand mould printing based on line forming, introduce the manufacturing principle and show advantages of this approach, especially for larger parts with large Z steps in the build, such as 2 mm stepwise.
Design/methodology/approach
This paper introduces 3D sand mould printing, compares and analyses technological process and existing fabrication approaches among available technologies first. Then, a new approach of 3D sand mould printing is proposed to improve build speed. In addition, the proposed system will be analysed or benchmarked against existing systems.
Findings
A new approach based on line forming of sand mould printing is put forward by reviewing and analysing available technologies, to improve build speed from the aspect of basic moulding movement instead of optimization of moulding methods and process parameters. The theoretical calculation and analysis shows that build speed can be improved greatly, and it is more suitable for the manufacture of large-scale casting’s sand mould when considering dimensional accuracy and printing error, as well as uniformity of each layer.
Research limitations/implications
The specific implement scheme of line forming and nozzle’s specific structure of this new approach need further study.
Practical implications
Much higher build speed of 3D sand mould printing with new approach brings evident implication for moulds companies and manufacturing industry, having a far-reaching influence on the development of national economy.
Originality/value
This paper reviews available technologies and presents a new approach of 3D sand mould printing for the first time. Analysis of the new approach shows that this new method of sand mould printing can boost build speed greatly. So, its application prospect is great.
Details
Keywords
Abstract
Purpose
The purpose of this study is to analyse the problem of high binder content in sand mould and to solve it. Meanwhile, to increase build speed, especially for heavy casting’s sand mould with a high value in layer height, such as 2 mm in construction instead of the industry standard of 0.3 mm, line forming for three-dimensional (3D) sand mould printing is researched.
Design/methodology/approach
Brief introduction of 3D sand mould printing and key issues are given first. Then, this paper quantitatively analyses binder content in sand mould. Finally, to acquire sand mould with appropriate binder content and high build speed, line forming combining traditional furan no-bake sand manufacture technique is researched, as well as relevant feasible schemes and current progress.
Findings
The study shows that compared with traditional technique, binder content in sand mould produced by available 3D printing technique is too high, bad for sand mould’s properties and quality of castings, while line forming brings guaranteed binder content and improved build speed.
Research limitations/implications
More experiments are needed to demonstrate quantitative analysis of binder content and to obtain flowability of moist sand, detailed structure design of nozzle and practical build speed, as well as methods of circulation of materials considering solidification time.
Practical implications
Line forming with higher build speed and suitable binder content means excellent properties of sand mould and castings as well, bringing obvious implication for moulds industries and manufacturing industry.
Originality/value
This new method could increase build speed and meanwhile guarantee binder content. Thus, its application prospect is promising.
Details
Keywords
Zengrui Zheng, Kainan Su, Shifeng Lin, Zhiquan Fu and Chenguang Yang
Visual simultaneous localization and mapping (SLAM) has limitations such as sensitivity to lighting changes and lower measurement accuracy. The effective fusion of information…
Abstract
Purpose
Visual simultaneous localization and mapping (SLAM) has limitations such as sensitivity to lighting changes and lower measurement accuracy. The effective fusion of information from multiple modalities to address these limitations has emerged as a key research focus. This study aims to provide a comprehensive review of the development of vision-based SLAM (including visual SLAM) for navigation and pose estimation, with a specific focus on techniques for integrating multiple modalities.
Design/methodology/approach
This paper initially introduces the mathematical models and framework development of visual SLAM. Subsequently, this paper presents various methods for improving accuracy in visual SLAM by fusing different spatial and semantic features. This paper also examines the research advancements in vision-based SLAM with respect to multi-sensor fusion in both loosely coupled and tightly coupled approaches. Finally, this paper analyzes the limitations of current vision-based SLAM and provides predictions for future advancements.
Findings
The combination of vision-based SLAM and deep learning has significant potential for development. There are advantages and disadvantages to both loosely coupled and tightly coupled approaches in multi-sensor fusion, and the most suitable algorithm should be chosen based on the specific application scenario. In the future, vision-based SLAM is evolving toward better addressing challenges such as resource-limited platforms and long-term mapping.
Originality/value
This review introduces the development of vision-based SLAM and focuses on the advancements in multimodal fusion. It allows readers to quickly understand the progress and current status of research in this field.
Details
Keywords
Shuai Wang, Fei Zhao, Bo Zhou and Shifeng Xue
A distributed piezoelectric actuator (DPA) improving the deformation performance of wing is proposed. As the power source of morphing wing, the factors affecting the driving…
Abstract
Purpose
A distributed piezoelectric actuator (DPA) improving the deformation performance of wing is proposed. As the power source of morphing wing, the factors affecting the driving performance of DPA were studied.
Design/methodology/approach
The DPA is composed of a substrate beam and a certain number of piezoelectric patches pasted on its upper and lower ends. Utilizing the inverse piezoelectric effect of piezoelectric material, the DPA transfers displacement to the wing skin to change its shape. According to the finite element method and piezoelectric constitutive equation, the structure model of DPA was established, and its deformation behavior was analyzed. The accuracy of algorithm was verified by comparison with previous studies.
Findings
The results show that the arrangement way, length and thickness of piezoelectric patches, the substrate beam thickness and the applied voltage are the important factors to determine the driving performance of DPA.
Research limitations/implications
This paper can provide theoretical basis and calculation method for the design and application of distributed piezoelectric actuator and morphing wing.
Originality/value
A novel morphing wing drove by DPA is proposed to improve environmental adaptability of aircraft. As the power source achieving wing deformation, the DPA model is established by FEM. Then the factors affecting the driving performance are analyzed. The authors find the centrosymmetric arrangement way of piezoelectric patches is superior to the axisymmetric arrangement, and distribution center of the piezoelectric patches determines the driving performance.
Details
Keywords
Shifeng Lin and Ning Wang
In multi-robot cooperation, the cloud can share sensor data, which can help robots better perceive the environment. For cloud robotics, robot grasping is an important ability that…
Abstract
Purpose
In multi-robot cooperation, the cloud can share sensor data, which can help robots better perceive the environment. For cloud robotics, robot grasping is an important ability that must be mastered. Usually, the information source of grasping mainly comes from visual sensors. However, due to the uncertainty of the working environment, the information acquisition of the vision sensor may encounter the situation of being blocked by unknown objects. This paper aims to propose a solution to the problem in robot grasping when the vision sensor information is blocked by sharing the information of multi-vision sensors in the cloud.
Design/methodology/approach
First, the random sampling consensus algorithm and principal component analysis (PCA) algorithms are used to detect the desktop range. Then, the minimum bounding rectangle of the occlusion area is obtained by the PCA algorithm. The candidate camera view range is obtained by plane segmentation. Then the candidate camera view range is combined with the manipulator workspace to obtain the camera posture and drive the arm to take pictures of the desktop occlusion area. Finally, the Gaussian mixture model (GMM) is used to approximate the shape of the object projection and for every single Gaussian model, the grabbing rectangle is generated and evaluated to get the most suitable one.
Findings
In this paper, a variety of cloud robotic being blocked are tested. Experimental results show that the proposed algorithm can capture the image of the occluded desktop and grab the objects in the occluded area successfully.
Originality/value
In the existing work, there are few research studies on using active multi-sensor to solve the occlusion problem. This paper presents a new solution to the occlusion problem. The proposed method can be applied to the multi-cloud robotics working environment through cloud sharing, which helps the robot to perceive the environment better. In addition, this paper proposes a method to obtain the object-grabbing rectangle based on GMM shape approximation of point cloud projection. Experiments show that the proposed methods can work well.
Details
Keywords
Qiuping Yang, Huizhi Li, Yubo Zhai, Xiaofeng Li and Peizhi Zhang
To prepare a new type of composite for selective laser sintering 3D printing, the surface of Al2O3 nanoparticles was modified by the coupling agent…
Abstract
Purpose
To prepare a new type of composite for selective laser sintering 3D printing, the surface of Al2O3 nanoparticles was modified by the coupling agent (3-methacryloxypropyl)-trimethoxy silane (KH570) before coated with thermoplastic epoxy resin (TER).
Design/methodology/approach
Laser diffraction confirmed that the size distribution of prepared powder materials in this study ranged between 20 to 80 µm. Thermogravimetric analysis (TGA) showed that the loading of organic matter was below 5 per cent. Fourier transform infrared spectroscopy indicated that the silane coupling agent molecule bound strongly with the alumina. X-ray diffraction confirmed the prepared powder materials to be α-alumina. Through the angle of repose (AOR) test, the AOR = 18.435º was obtained, suggesting the high flowability of prepared powder materials. Scanning electron microscopy (SEM) observation demonstrated that the shape of the prepared powder materials was sphere-like grains.
Findings
Molding properties of prepared powder materials were studied on the basis of particle size distribution, particle size, sphericity, crystal structure and the reaction mode of the TER. This prepared powder materials can be well applied to the production of epoxy resin-coated Al2O3 composite parts with high precision and good mechanical performance.
Originality/value
This composite can be well applied to the production of epoxy resin-coated Al2O3 composite parts with high precision and good mechanical performance.
Details
Keywords
Karl P. Davidson and Sarat B. Singamneni
This paper aims to establish the microstructures and the process-structure relationships in duplex stainless steel powders consolidated by selective laser melting (SLM).
Abstract
Purpose
This paper aims to establish the microstructures and the process-structure relationships in duplex stainless steel powders consolidated by selective laser melting (SLM).
Design/methodology/approach
A priori data on energy density levels most appropriate to consolidation of duplex stainless steel powders through SLM served as the basis to converge on the laser settings. Experimental designs with varying laser power and scan speeds and test pieces generated allowed metallographic evaluations based on optical and scanning electron microscopy and electro backscatter diffraction analyses.
Findings
Duplex stainless steel powders are established for processing by SLM. However, the dynamic point heat source and associated transient thermal fields affect the microstructures to be predominantly ferritic, with grains elongated in the build direction. Austenite precipitated either at the grain boundaries or as Widmanstätten laths, whereas the crystallographic orientations and the grain growth are affected around the cavities. Considerable CrN precipitation is also evidenced.
Originality/value
Duplex stainless steels are relatively new candidates to be brought into the additive manufacturing realm. Considering the poor machinability and other difficulties, the overarching result indicating suitability of duplex powders by SLM is of considerable value to the industry. More significantly, the metallographic evaluation and results of the current research allowed further understanding of the material consolidation aspects and pave ways for fine tuning and establishment of the process-structure-property relationships for this important process-material combination.