Search results

1 – 8 of 8
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 9 July 2024

Zengrui Zheng, Kainan Su, Shifeng Lin, Zhiquan Fu and Chenguang Yang

Visual simultaneous localization and mapping (SLAM) has limitations such as sensitivity to lighting changes and lower measurement accuracy. The effective fusion of information…

284

Abstract

Purpose

Visual simultaneous localization and mapping (SLAM) has limitations such as sensitivity to lighting changes and lower measurement accuracy. The effective fusion of information from multiple modalities to address these limitations has emerged as a key research focus. This study aims to provide a comprehensive review of the development of vision-based SLAM (including visual SLAM) for navigation and pose estimation, with a specific focus on techniques for integrating multiple modalities.

Design/methodology/approach

This paper initially introduces the mathematical models and framework development of visual SLAM. Subsequently, this paper presents various methods for improving accuracy in visual SLAM by fusing different spatial and semantic features. This paper also examines the research advancements in vision-based SLAM with respect to multi-sensor fusion in both loosely coupled and tightly coupled approaches. Finally, this paper analyzes the limitations of current vision-based SLAM and provides predictions for future advancements.

Findings

The combination of vision-based SLAM and deep learning has significant potential for development. There are advantages and disadvantages to both loosely coupled and tightly coupled approaches in multi-sensor fusion, and the most suitable algorithm should be chosen based on the specific application scenario. In the future, vision-based SLAM is evolving toward better addressing challenges such as resource-limited platforms and long-term mapping.

Originality/value

This review introduces the development of vision-based SLAM and focuses on the advancements in multimodal fusion. It allows readers to quickly understand the progress and current status of research in this field.

Details

Robotic Intelligence and Automation, vol. 44 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

Access Restricted. View access options
Article
Publication date: 5 April 2021

Shifeng Lin and Ning Wang

In multi-robot cooperation, the cloud can share sensor data, which can help robots better perceive the environment. For cloud robotics, robot grasping is an important ability that…

298

Abstract

Purpose

In multi-robot cooperation, the cloud can share sensor data, which can help robots better perceive the environment. For cloud robotics, robot grasping is an important ability that must be mastered. Usually, the information source of grasping mainly comes from visual sensors. However, due to the uncertainty of the working environment, the information acquisition of the vision sensor may encounter the situation of being blocked by unknown objects. This paper aims to propose a solution to the problem in robot grasping when the vision sensor information is blocked by sharing the information of multi-vision sensors in the cloud.

Design/methodology/approach

First, the random sampling consensus algorithm and principal component analysis (PCA) algorithms are used to detect the desktop range. Then, the minimum bounding rectangle of the occlusion area is obtained by the PCA algorithm. The candidate camera view range is obtained by plane segmentation. Then the candidate camera view range is combined with the manipulator workspace to obtain the camera posture and drive the arm to take pictures of the desktop occlusion area. Finally, the Gaussian mixture model (GMM) is used to approximate the shape of the object projection and for every single Gaussian model, the grabbing rectangle is generated and evaluated to get the most suitable one.

Findings

In this paper, a variety of cloud robotic being blocked are tested. Experimental results show that the proposed algorithm can capture the image of the occluded desktop and grab the objects in the occluded area successfully.

Originality/value

In the existing work, there are few research studies on using active multi-sensor to solve the occlusion problem. This paper presents a new solution to the occlusion problem. The proposed method can be applied to the multi-cloud robotics working environment through cloud sharing, which helps the robot to perceive the environment better. In addition, this paper proposes a method to obtain the object-grabbing rectangle based on GMM shape approximation of point cloud projection. Experiments show that the proposed methods can work well.

Details

Assembly Automation, vol. 41 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Access Restricted. View access options
Article
Publication date: 29 June 2022

Fan Lin, Jianshe Peng, Shifeng Xue and Jie Yang

In this paper, the authors aim to propose an effective method to indirectly determine nonlinear elastic shear stress-strain constitutive relationships for nonlinear elasticity…

71

Abstract

Purpose

In this paper, the authors aim to propose an effective method to indirectly determine nonlinear elastic shear stress-strain constitutive relationships for nonlinear elasticity materials, and then study the nonlinear free torsional vibration of Al–1%Si shaft.

Design/methodology/approach

In this study the authors use BoxLucas1 model to fit the determined-experimentally nonlinear elastic normal stress–strain constitutive relationship curve of Al–1%Si, a typical case of isotropic nonlinear elasticity materials, and then derive its nonlinear shear stress-strain constitutive relationships based on the fitting constitutive relationships and general equations of plane-stress and plane-strain transformation. Hamilton’s principle is utilized to gain nonlinear governing equation and boundary conditions for free torsional vibration of Al–1%Si shaft. Differential quadrature method and an iterative algorithm are employed to numerically solve the gained equations of motion.

Findings

The effect of four variables, namely dimensionless fundamental vibration amplitude ϑmax, radius α and length β, and nonlinear-elasticity intensity factor δ, on frequencies and mode shapes of the shafts is obtained. Numerical results are in good agreement with reference solutions, and show that compared with linearly elastic shear stress-strain constitutive relationships of the shafts made of the nonlinear elasticity materials, its actual nonlinearly elastic shear stress-strain constitutive relationships have smaller torsion frequencies. In addition, but β having opposite hardening effect, the rest of the four variables have softening effect on nonlinearly elastic torsion frequencies. Eventually, taking into account nonlinearly elastic shear stress-strain constitutive relationships, changes of the four factors, i.e. ϑmax, α, β and δ, cause inflation and deflation behaviors of mode shapes in nonlinear free torsional vibration.

Originality/value

The study could provide a reference for indirectly determining nonlinear elastic shear stress-strain constitutive relationships for nonlinear elasticity materials and for structure design of torsional shaft made of nonlinear elasticity materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 20 June 2016

Wei Zhu, Chunze Yan, Yunsong Shi, Shifeng Wen, Changjun Han, Chao Cai, Jie Liu and Yusheng Shi

Semi-crystalline polymers such as polyamide-12 can be used for selective laser sintering (SLS) to make near-fully dense plastic parts. At present, however, the types of…

1098

Abstract

Purpose

Semi-crystalline polymers such as polyamide-12 can be used for selective laser sintering (SLS) to make near-fully dense plastic parts. At present, however, the types of semi-crystalline polymers suitable for SLS are critically limited. Therefore, the purpose of this paper is to investigate the processibility of a new kind of semi-crystalline polypropylene (PP) with low isotacticity for SLS process.

Design/methodology/approach

The SLS processibility of the PP powder, including particle size and shape, sintering window, degree of crystallinity and degradation temperature, was evaluated. Effects of the applied laser energy density on the surface micromorphology, density, tensile strength and thermal properties of SLS-built PP specimens were studied.

Findings

The results show that the PP powder has a nearly spherical shape, smooth surfaces, an appropriate average particle size of 63.6 μm, a broad sintering window of 21 oC and low crystalline degree of 30.4 per cent comparable to that of polyamide-12, a high degradation temperature of 381.8°C and low part bed temperature of 105°C, indicating a very good SLS processibility. The density and the tensile strength first increase with increasing laser energy density until they reach the maximum values of 0.831 g/cm3 and 19.9 MPa, respectively, at the laser energy density of 0.0458 J/mm2, and then decrease when the applied laser energy density continue to increase owing to the degradation of PP powders. The complex PP components have been manufactured by SLS using the optimum parameters, which are strong enough to be directly used as functional parts.

Originality/value

This paper provides a new knowledge for this field that low-isotacticity PPs exhibit good SLS processibility, therefore increasing material types and broadening the application of SLS technology.

Details

Rapid Prototyping Journal, vol. 22 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 16 September 2022

Chenyang Mao, Bo Zhou and Shifeng Xue

Piezoelectric materials are widely used as actuators, due to the advantages of quick response, high sensitivity and linear strain-electric field relationship. The previous work on…

79

Abstract

Purpose

Piezoelectric materials are widely used as actuators, due to the advantages of quick response, high sensitivity and linear strain-electric field relationship. The previous work on the piezoelectric material plate structures is not enough; however, such structures play a very important role in the practical design. In this paper, the actuation performance of piezoelectric laminated plate actuator (PLPA) is analyzed based on Galerkin method to parametric study the shape control.

Design/methodology/approach

In this paper, the actuation performance of PLPA is analyzed based on Galerkin method to parametric study the shape control. The stress components of the matrix plate are formulated based on electro-mechanical coupling theory and Kirchhoff's classical laminated plate theory. The effectiveness of the developed method is validated by the comparison with finite element method.

Findings

The actuation performance of PLPA and its influencing factors are numerically analyzed through the developed method. The deflection of PLPA is reasonably increased by optimizing the electric fields, the piezoelectric patch and the matrix plate.

Originality/value

The Galerkin method can be used for engineering applications more easily, and it does not require to rebuild the calculation model as finite element method during the calculation and analysis of PLPA. This paper is a valuable reference for the design and analysis of PLPAs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Access Restricted. View access options
Article
Publication date: 16 January 2017

Changjun Han, Chunze Yan, Shifeng Wen, Tian Xu, Shuai Li, Jie Liu, Qingsong Wei and Yusheng Shi

Selective laser melting (SLM) is an additive manufacturing process suitable for fabricating metal porous scaffolds. The unit cell topology is a significant factor that determines…

1156

Abstract

Purpose

Selective laser melting (SLM) is an additive manufacturing process suitable for fabricating metal porous scaffolds. The unit cell topology is a significant factor that determines the mechanical property of porous scaffolds. Therefore, the purpose of this paper is to evaluate the effects of unit cell topology on the compression properties of porous Cobalt–chromium (Co-Cr) scaffolds fabricated by SLM using finite element (FE) and experimental measurement methods.

Design/methodology/approach

The Co-Cr alloy porous scaffolds constructed in four different topologies, i.e. cubic close packed (CCP), face-centered cubic (FCC), body-centered cubic (BCC) and spherical hollow cubic (SHC), were designed and fabricated via SLM process. FE simulations and compression tests were performed to evaluate the effects of unit cell topology on the compression properties of SLM-processed porous scaffolds.

Findings

The Mises stress predicted by FE simulations showed that different unit cell topologies resulted in distinct stress distributions on the bearing struts of scaffolds, whereas the unit cell size directly determined the stress value. Comparisons on the stress results for four topologies showed that the FCC unit cell has the minimum stress concentration due to its inclined bearing struts and horizontal arms. Simulations and experiments both indicated that the compression modulus and strengths of FCC, BCC, SHC, CCP scaffolds with the same cell size presented in a descending order. These distinct compression behaviors were correlated with the corresponding mechanics response on bearing struts. Two failure mechanisms, cracking and collapse, were found through the results of compression tests, and the influence of topological designs on the failure was analyzed and discussed. Finally, the cell initial response of the SLM-processed Co-Cr scaffold was tested through the in vitro cell culture experiment.

Originality/value

A focus and concern on the compression properties of SLM-processed porous scaffolds was presented from a new perspective of unit cell topology. It provides some new knowledge to the structure optimization of porous scaffolds for load-bearing bone implants.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 1 October 2018

Qiuping Yang, Huizhi Li, Yubo Zhai, Xiaofeng Li and Peizhi Zhang

To prepare a new type of composite for selective laser sintering 3D printing, the surface of Al2O3 nanoparticles was modified by the coupling agent…

511

Abstract

Purpose

To prepare a new type of composite for selective laser sintering 3D printing, the surface of Al2O3 nanoparticles was modified by the coupling agent (3-methacryloxypropyl)-trimethoxy silane (KH570) before coated with thermoplastic epoxy resin (TER).

Design/methodology/approach

Laser diffraction confirmed that the size distribution of prepared powder materials in this study ranged between 20 to 80 µm. Thermogravimetric analysis (TGA) showed that the loading of organic matter was below 5 per cent. Fourier transform infrared spectroscopy indicated that the silane coupling agent molecule bound strongly with the alumina. X-ray diffraction confirmed the prepared powder materials to be α-alumina. Through the angle of repose (AOR) test, the AOR = 18.435º was obtained, suggesting the high flowability of prepared powder materials. Scanning electron microscopy (SEM) observation demonstrated that the shape of the prepared powder materials was sphere-like grains.

Findings

Molding properties of prepared powder materials were studied on the basis of particle size distribution, particle size, sphericity, crystal structure and the reaction mode of the TER. This prepared powder materials can be well applied to the production of epoxy resin-coated Al2O3 composite parts with high precision and good mechanical performance.

Originality/value

This composite can be well applied to the production of epoxy resin-coated Al2O3 composite parts with high precision and good mechanical performance.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 23 October 2015

Shu Yi, Lin Xiao, Yong Zhang, Dujuan Duan and Maksim G. Blokhin

This paper describes the organic geochemical characteristics and their roles on barium enrichment in the No. 2 Coal from Huanglong Jurassic Coalfield, China. A total of 18 bench…

44

Abstract

This paper describes the organic geochemical characteristics and their roles on barium enrichment in the No. 2 Coal from Huanglong Jurassic Coalfield, China. A total of 18 bench samples were taken from Huangling Mine 2. The average content of barium (3701 mg/kg) was about 23 times higher than that of common world coals. Terrestrial higher plants were the main coal-forming parent material. Relying on the parameters of OEP, Pr/Ph and so on, there is little correlation between organic geochemical characteristics and barium enrichment. Therefore, organic material has little influence on the process of coal-forming and the enrichment of barium.

Details

World Journal of Engineering, vol. 12 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 8 of 8
Per page
102050