Search results
1 – 3 of 3Yuchuan Wu, Shengfeng Qi, Feng Hu, Shuangbao Ma, Wen Mao and Wei Li
In human action recognition based on wearable sensors, most previous studies have focused on a single type of sensor and single classifier. This study aims to use a wearable…
Abstract
Purpose
In human action recognition based on wearable sensors, most previous studies have focused on a single type of sensor and single classifier. This study aims to use a wearable sensor based on flexible sensors and a tri-axial accelerometer to collect action data of elderly people. It uses a statistical modeling approach based on the ensemble algorithm to classify actions and verify its validity.
Design/methodology/approach
Nine types of daily actions were collected by the wearable sensor device from a group of elderly volunteers, and the time-domain features of the action sequences were extracted. The dimensionality of the feature vectors was reduced by linear discriminant analysis. An ensemble learning method based on XGBoost was used to build a model of elderly action recognition. Its performance was compared with the action recognition rate of other algorithms based on the Boosting algorithm, and with the accuracy of single classifier models.
Findings
The effectiveness of the method was validated by three experiments. The results show that XGBoost is able to classify nine daily actions of the elderly and achieve an average recognition rate of 94.8 per cent, which is superior to single classifiers and to other ensemble algorithms.
Practical implications
The research could have important implications for health care, including the treatment and rehabilitation of the elderly, and the prevention of falls.
Originality/value
Instead of using a single type of sensor, this research used a wearable sensor to obtain daily action data of the elderly. The results show that, by using the appropriate method, the device can obtain detailed data of joint action at a low cost. Comparing differences in performance, it was concluded that XGBoost is the most suitable algorithm for building a model of elderly action recognition. This method, together with a wearable sensor, can provide key data and accurate feedback information to monitor the elderly in their rehabilitation activities.
Details
Keywords
This study aims to understand the epistemic foundation of the classification applied in the first Chinese library catalogue, the Seven Epitomes (Qilue).
Abstract
Purpose
This study aims to understand the epistemic foundation of the classification applied in the first Chinese library catalogue, the Seven Epitomes (Qilue).
Design/methodology/approach
Originating from a theoretical stance that situates knowledge organization in its social context, the study applies a multifaceted framework pertaining to five categories of textual data: the Seven Epitomes; biographical information about the classificationist Liu Xin; and the relevant intellectual, political, and technological history.
Findings
The study discovers seven principles contributing to the epistemic foundation of the catalogue's classification: the Han imperial library collection imposed as the literary warrant; government functions considered for structuring texts; classicist morality determining the main classificatory structure; knowledge perceived and organized as a unity; objects, rather than subjects, of concern affecting categories at the main class level; correlative thinking connecting all text categories to a supreme knowledge embodied by the Six Classics; and classicist moral values resulting in both vertical and horizontal hierarchies among categories as well as texts.
Research limitations/implications
A major limitation of the study is its focus on the main classes, with limited attention to subclasses. Future research can extend the analysis to examine subclasses of the same scheme. Findings from these studies may lead to a comparison between the epistemic approach in the target classification and the analytic one common in today's bibliographic classification.
Originality/value
The study is the first to examine in depth the epistemic foundation of traditional Chinese bibliographic classification, anchoring the classification in its appropriate social and historical context.
Details
Keywords
Congying Guan, Shengfeng Qin, Wessie Ling and Guofu Ding
With the developments of e-commerce markets, novel recommendation technologies are becoming an essential part of many online retailers’ economic models to help drive online sales…
Abstract
Purpose
With the developments of e-commerce markets, novel recommendation technologies are becoming an essential part of many online retailers’ economic models to help drive online sales. Initially, the purpose of this paper is to undertake an investigation of apparel recommendations in the commercial market in order to verify the research value and significance. Then, this paper reviews apparel recommendation techniques and systems through academic research, aiming to acquaint apparel recommendation context, summarize the pros and cons of various research methods, identify research gaps and eventually propose new research solutions to benefit apparel retailing market.
Design/methodology/approach
This study utilizes empirical research drawing on 130 academic publications indexed from online databases. The authors introduce a three-layer descriptor for searching articles, and analyse retrieval results via distribution graphics of years, publications and keywords.
Findings
This study classified high-tech integrated apparel systems into 3D CAD systems, personalised design systems and recommendation systems. The authors’ research interest is focussed on recommendation system. Four types of models were found, namely clothes searching/retrieval, wardrobe recommendation, fashion coordination and intelligent recommendation systems. The forth type, smart systems, has raised more awareness in apparel research as it is equipped with advanced functions and application scenarios to satisfy customers. Despite various computational algorithms tested in system modelling, existing research is lacking in terms of apparel and users profiles research. Thus, from the review, the authors have identified and proposed a more complete set of key features for describing both apparel and users profiles in a recommendation system.
Originality/value
Based on previous studies, this is the first review paper on this topic in this subject field. The summarised work and the proposed new research will inspire future researchers with various knowledge backgrounds, especially, from a design perspective.
Details