Zhifang Wang, Jianguo Yu, Shangjing Lin, Junguo Dong and Zheng Yu
The paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, this paper aims to propose a distributed robust H∞ adaptive…
Abstract
Purpose
The paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, this paper aims to propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the system to distribute to solve the problem of control and communication failure at the same time.
Design/methodology/approach
In the paper, the authors propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the air-ground integrated wireless ad hoc network-integrated system.
Findings
The results show that the integrated system has good robustness and fault tolerance performance indicators for flight control and wireless signal transmission when confronted with external disturbances, internal actuator failures and wireless network associated failures and the flight control curve of the quadrotor unmanned aerial vehicle (UAV) is generally smooth and stable, even if it encounters external disturbances and actuator failures, its fault tolerance performance is very good. Then in the range of 400–800 m wireless communication distance, the success rate of wireless signal loop transmission is stable at 80%–100% and the performance is at least relatively improved by 158.823%.
Originality/value
This paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, based on the robust fault-tolerant control algorithm, the authors propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the system and through the Riccati equation and linear matrix inequation method, the designed distributed robust H∞ adaptive fault-tolerant controller further optimizes the fault suppression factor γ, so as to break through the limitation of only one Lyapunov matrix for different fault modes to distribute to solve the problem of control and communication failure at the same time.
Details
Keywords
Zhifang Wang, Jianguo Yu and Shangjing Lin
To solve the above problems and ensure the stability of the ad hoc network node topology in the process of wireless signal transmission, this paper aims to design a robust…
Abstract
Purpose
To solve the above problems and ensure the stability of the ad hoc network node topology in the process of wireless signal transmission, this paper aims to design a robust adaptive sliding film fault-tolerant controller under the nonlinear distortion of signal transmission in an amorphous flat air-to-ground wireless ad hoc network system.
Design/methodology/approach
This paper designs a robust adaptive sliding film fault-tolerant controller under the nonlinear distortion of signal transmission in an amorphous flat air-to-ground wireless ad hoc network system.
Findings
The simulation results show that the amorphous flat wireless self-organizing network system has good nonlinear distortion fault-tolerant correction ability under the feedback control of the designed controller, and the system has the asymptotically stable convergence ability; the test results show: the node topology of the self-organizing network structural stability is significantly improved, which provides a foundation for the subsequent realization of long-distance transmission of ad hoc network nodes.
Research limitations/implications
Because of the chosen research approach, the research results may lack generalizability. Therefore, researchers are encouraged to test the proposed propositions further.
Originality/value
The controller can extract the fault information caused by nonlinear distortion in the wireless signal transmission process, and at the same time, its feedback matrix K can gradually converge the generated wireless signal error to zero, to realize the stable transmission of the wireless signal.