Search results
1 – 3 of 3Maxwell Fordjour Antwi-Afari, Heng Li, JoonOh Seo, Shahnawaz Anwer, Sitsofe Kwame Yevu and Zezhou Wu
Construction workers are frequently exposed to safety hazards on sites. Wearable sensing systems (e.g. wearable inertial measurement units (WIMUs), wearable insole pressure system…
Abstract
Purpose
Construction workers are frequently exposed to safety hazards on sites. Wearable sensing systems (e.g. wearable inertial measurement units (WIMUs), wearable insole pressure system (WIPS)) have been used to collect workers' gait patterns for distinguishing safety hazards. However, the performance of measuring WIPS-based gait parameters for identifying safety hazards as compared to a reference system (i.e. WIMUs) has not been studied. Therefore, this study examined the validity and reliability of measuring WIPS-based gait parameters as compared to WIMU-based gait parameters for distinguishing safety hazards in construction.
Design/methodology/approach
Five fall-risk events were conducted in a laboratory setting, and the performance of the proposed approach was assessed by calculating the mean difference (MD), mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE) and intraclass correlation coefficient (ICC) of five gait parameters.
Findings
Comparable results of MD, MAE, MAPE and RMSE were found between WIPS-based gait parameters and the reference system. Furthermore, all measured gait parameters had validity (ICC = 0.751) and test-retest reliability (ICC = 0.910) closer to 1, indicating a good performance of measuring WIPS-based gait parameters for distinguishing safety hazards.
Research limitations/implications
Overall, this study supports the relevance of developing a WIPS as a noninvasive wearable sensing system for identifying safety hazards on construction sites, thus highlighting the usefulness of its applications for construction safety research.
Originality/value
This is the first study to examine the performance of a wearable insole pressure system for identifying safety hazards in construction.
Details
Keywords
Shahnawaz Anwer, Heng Li, Maxwell Fordjour Antwi-Afari, Waleed Umer, Imran Mehmood and Arnold Yu Lok Wong
Since construction workers often need to carry various types of loads in their daily routine, they are at risk of sustaining musculoskeletal injuries. Additionally, carrying a…
Abstract
Purpose
Since construction workers often need to carry various types of loads in their daily routine, they are at risk of sustaining musculoskeletal injuries. Additionally, carrying a load during walking may disturb their walking balance and lead to fall injuries among construction workers. Different load carrying techniques may also cause different extents of physical exertion. Therefore, the purpose of this paper is to examine the effects of different load-carrying techniques on gait parameters, dynamic balance, and physiological parameters in asymptomatic individuals on both stable and unstable surfaces.
Design/methodology/approach
Fifteen asymptomatic male participants (mean age: 31.5 ± 2.6 years) walked along an 8-m walkway on flat and foam surfaces with and without a load thrice using three different techniques (e.g. load carriage on the head, on the dominant shoulder, and in both hands). Temporal gait parameters (e.g. gait speed, cadence, and double support time), gait symmetry (e.g. step time, stance time, and swing time symmetry), and dynamic balance parameters [e.g. anteroposterior and mediolateral center of pressure (CoP) displacement, and CoP velocity] were evaluated. Additionally, the heart rate (HR) and electrodermal activity (EDA) was assessed to estimate physiological parameters.
Findings
The gait speed was significantly higher when the load was carried in both hands compared to other techniques (Hand load, 1.02 ms vs Head load, 0.82 ms vs Shoulder load, 0.78 ms). Stride frequency was significantly decreased during load carrying on the head than the load in both hands (46.5 vs 51.7 strides/m). Step, stance, and swing time symmetry were significantly poorer during load carrying on the shoulder than the load in both hands (Step time symmetry ration, 1.10 vs 1.04; Stance time symmetry ratio, 1.11 vs 1.05; Swing time symmetry ratio, 1.11 vs 1.04). The anteroposterior (Shoulder load, 17.47 mm vs Head load, 21.10 mm vs Hand load, −5.10 mm) and mediolateral CoP displacements (Shoulder load, −0.57 mm vs Head load, −1.53 mm vs Hand load, −3.37 ms) significantly increased during load carrying on the shoulder or head compared to a load in both hands. The HR (Head load, 85.2 beats/m vs Shoulder load, 77.5 beats/m vs No load, 69.5 beats/m) and EDA (Hand load, 14.0 µS vs Head load, 14.3 µS vs Shoulder load, 14.1 µS vs No load, 9.0 µS) were significantly larger during load carrying than no load.
Research limitations/implications
The findings suggest that carrying loads in both hands yields better gait symmetry and dynamic balance than carrying loads on the dominant shoulder or head. Construction managers/instructors should recommend construction workers to carry loads in both hands to improve their gait symmetry and dynamic balance and to lower their risk of falls.
Practical implications
The potential changes in gait and balance parameters during various load carrying methods will aid the assessment of fall risk in construction workers during loaded walking. Wearable insole sensors that monitor gait and balance in real-time would enable safety managers to identify workers who are at risk of falling during load carriage due to various reasons (e.g. physical exertion, improper carrying techniques, fatigue). Such technology can also empower them to take the necessary steps to prevent falls.
Originality/value
This is the first study to use wearable insole sensors and a photoplethysmography device to assess the impacts of various load carrying approaches on gait parameters, dynamic balance, and physiological measures (i.e. HR and EDA) while walking on stable and unstable terrains.
Details
Keywords
Dephanie Cheok Ieng Chiang, Maxwell Fordjour Antwi-Afari, Shahnawaz Anwer, Saeed Reza Mohandes and Xiao Li
Given the growing concern about employees' well-being, numerous researchers have investigated the causes and effects of occupational stress. However, a review study on identifying…
Abstract
Purpose
Given the growing concern about employees' well-being, numerous researchers have investigated the causes and effects of occupational stress. However, a review study on identifying existing research topics and gaps is still deficient in the extant literature. To fill this gap, this review study aims to present a bibliometric and science mapping approach to review the state-of-the-art journal articles published on occupational stress in the construction industry.
Design/methodology/approach
A three-fold comprehensive review approach consisting of bibliometric review, scientometric analysis and in-depth qualitative discussion was employed to review 80 journal articles in Scopus.
Findings
Through qualitative discussions, mainstream research topics were summarized, research gaps were identified and future research directions were proposed as follows: versatile stressors and stress model; an extended subgroup of factors in safety behavior; adaptation of multiple biosensors and bio-feedbacks; evaluation and comparison of organizational stress interventions; and incorporation of artificial intelligence and smart technologies into occupational stress management in construction.
Originality/value
The findings of this review study present a well-rounded framework to identify the research gaps in this field to advance research in the academic community and enhance employees' well-being in construction.
Details