Search results
1 – 4 of 4Seyed Morteza Hosseini, Shahin Heidari, Shady Attia, Julian Wang and Georgios Triantafyllidis
This study aims to develop a methodology that extracts an architectural concept from a biological analogy that integrates forms and kinetic behavior to identify whether complex…
Abstract
Purpose
This study aims to develop a methodology that extracts an architectural concept from a biological analogy that integrates forms and kinetic behavior to identify whether complex forms work better or simple forms with proper kinetic behavior for improving visual comfort and daylight performance.
Design/methodology/approach
The research employs a transdisciplinary approach using several methods consisting of a biomimetic functional-morphological approach, kinetic design strategy, case study comparison using algorithmic workflow and parametric simulation and inverse design, to develop an interactive kinetic façade with optimized daylight performance.
Findings
A key development is the introduction of a periodic interactive region (PIR), which draws inspiration from the butterfly wings' nanostructure. These findings challenge conventional perspectives on façade complexity, highlighting the efficacy of simpler shapes paired with appropriate kinetic behavior for improving visual comfort. The results show the façade with a simpler “Bookshelf” shape integrated with a tapered shape of the periodic interactive region, outperforms its more complex counterpart (Hyperbolic Paraboloid component) in terms of daylight performance and glare control, especially in southern orientations, ensuring occupant visual comfort by keeping cases in the imperceptible range while also delivering sufficient average spatial Daylight Autonomy of 89.07%, Useful Daylight Illuminance of 94.53% and Exceeded Useful Daylight Illuminance of 5.11%.
Originality/value
The investigation of kinetic façade studies reveals that precedent literature mostly focused on engineering and building physics aspects, leaving the architectural aspect underutilized during the development phase. Recent studies applied a biomimetic approach for involving the architectural elements besides the other aspects. While the biomimetic method has proven effective in meeting occupants' visual comfort needs, its emphasis has been primarily on the complex form which is difficult to apply within the kinetic façade development. This study can address two gaps: (1) the lack of an architectural aspect in the kinetic façade design specifically in the development of conceptual form and kinetic behavior dimensions and (2) exchanging the superficial biomimetic considerations with an in-depth investigation.
Details
Keywords
Sara M. Zaina, Fodil Fadli and Seyed Morteza Hosseini
The study aims to develop recommendations for optimal Internet of things (IoT) based solutions for a smart precision irrigation automation platform using morphological thinking…
Abstract
Purpose
The study aims to develop recommendations for optimal Internet of things (IoT) based solutions for a smart precision irrigation automation platform using morphological thinking (MT). The smart irrigation system (SIS) can be applied for green roof and green wall (GRGW) design by studying the relationships and configurations that will be analyzed, listed and synthesized, representing “solutions spaces” and their possibilities.
Design/methodology/approach
The research examines studying various cases of SIS; and assessing and analyzing the identified case studies through a decision support system (DSS) considering several factors regarding IoT, plant characteristics, monitoring, irrigation system and schedule, climate, cost and sensors used.
Findings
To develop recommendations for optimal IoT-based solutions for a smart precision irrigation automation platform.
Originality/value
The research paper analyzes and proposes a simultaneous solution to two conflicting problems. On the one hand, the paper proposes to apply greening of walls and roofs in hot arid regions, which will achieve greater environmental comfort. However, this is extremely difficult to implement in hot arid regions, since there is an objective problem – a lack of water. At the same time, the paper proposes the most rational approaches to organizing an irrigation system with the lowest water consumption and the highest efficiency for landscaping. Accordingly, this paper focuses on evaluating different types of SIS about the hot-arid climate in Qatar. The study aims to develop recommendations for optimal IoT-based solutions for a smart precision irrigation automation platform, which can be applied for green wall and roof design.
Details
Keywords