Search results

1 – 5 of 5
Article
Publication date: 19 August 2021

Morteza Ghaseminezhad, Aref Doroudi, Seyed Hossein Hosseinian and Alireza Jalilian

Voltage fluctuation (flicker) is a power quality disturbance that can produce several undesirable effects on industrial equipment. This paper aims to present the methodology and…

Abstract

Purpose

Voltage fluctuation (flicker) is a power quality disturbance that can produce several undesirable effects on industrial equipment. This paper aims to present the methodology and results of investigations undertaken to examine the speed and torque of an induction motor (IM) under voltage fluctuation conditions.

Design/methodology/approach

The IM response to different characteristics of voltage fluctuations is presented. It will be shown that under a special condition the IM torque can even reach two times the rated torque. To show how this occurs, a qualitative discussion is given on the motor response by linearized equations.

Findings

The small-signal analysis was used to determine the frequency which leads to maximum speed fluctuations. It was shown that, if the motor is excited with a modulation frequency (resonant frequency) which is one of its natural frequencies (modes), the mode will act as a fluctuating amplifier and greatly increase the amplitude of torque and speed fluctuations. Sensitivity analysis is also carried out to evaluate the influence of motor parameters on the resonance frequency. The results show that the resonance frequency is not affected at all by the changes in magnetizing reactance. This has been shown that magnetic saturation does not have any impact on the resonance frequency. The most effective parameters are rotor and stator resistances.

Originality/value

With the increasing popularity and use of arc furnace loads in the metallurgy industry and due to the wide application of large IMs in the industry, it is possible that the frequency of torque pulsation locates near a natural frequency and then will create an oscillation with a large magnitude, potentially leading to accelerated fatigue or severe damage of shaft. However, if this phenomenon occurs in industries, the resonance frequency must be filtered from the input voltage. Experimental results on a 1.1 kW, 380 V, 50 Hz, 2 pole IM are used to validate the accuracy of simulation results.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 November 2012

Moslem Kouhi Jemsi, Behrooz Vahidi, Ramezan‐Ali Naghizadeh and Seyed Hossein Hosseinian

The purpose of this paper is to propose a new approach for designing different parts of a high voltage bushing. It also aims to consider technical and economical criteria for the…

Abstract

Purpose

The purpose of this paper is to propose a new approach for designing different parts of a high voltage bushing. It also aims to consider technical and economical criteria for the optimum solution of the design problem.

Design/methodology/approach

A novel method for finding the optimal contours of different elements of high voltage bushings, including ceramic insulator, electrode, and flange angle is presented. The rational Bézier curves are used for defining the surface of the insulators and conductors of the equipment. Then, these curves are optimally adjusted to obtain an appropriate techno‐economical solution. The utilized optimization method is the improved bacterial foraging algorithm (BFA) with variable step sizes. In the design procedure, two‐dimensional finite element method (2D FEM) is used to calculate the performance parameters in each step of the design procedure. In order to evaluate the performance of the proposed algorithm, optimal design of different elements of a 110 kV bushing using BFA and genetic algorithm is presented, compared, and discussed as well.

Findings

The results of this research show that the technical design criteria and economical costs are satisfied by the proposed method. It is concluded that the rational Bézier curves can be implemented for other similar applications and optimal design of other equipment in the electrical engineering field combined with heuristic optimization techniques.

Originality/value

Bezier curves are used for the first time for bushing design purpose. Two heuristic techniques are also implemented in order to facilitate the comparison and avoid local solutions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 August 2014

Ramezan Ali Naghizadeh, Behrooz Vahidi and Seyed Hossein Hosseinian

The purpose of this paper is to propose an accurate model for simulation of inrush current in power transformers with taking into account the magnetic core structure and…

Abstract

Purpose

The purpose of this paper is to propose an accurate model for simulation of inrush current in power transformers with taking into account the magnetic core structure and hysteresis phenomenon. Determination of the required model parameters and generalization of the obtained parameters to be used in different conditions with acceptable accuracy is the secondary purpose of this work.

Design/methodology/approach

The duality transformation is used to construct the transformer model based on its topology. The inverse Jiles-Atherton hysteresis model is used to represent the magnetic core behavior. Measured inrush waveforms of a laboratory test power transformer are used to calculate a fitness function which is defined by comparing the measured and simulated currents. This fitness function is minimized by particle swarm optimization algorithm which calculates the optimal model parameters.

Findings

An analytical and simple approach is proposed to generalize the obtained parameters from one inrush current measurement for simulation of this phenomenon in different situations. The measurement results verify the accuracy of the proposed method. The developed model with the determined parameters can be used for accurate simulation of inrush current transient in power transformers.

Originality/value

A general and flexible topology-based model is developed in PSCAD/EMTDC software to represent the transformer behavior in inrush situation. The hysteresis model parameters which are obtained from one inrush current waveform are generalized using the structure parameters, switching angle, and residual flux for accurate simulation of this phenomenon in different conditions.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2012

Ramezan‐Ali Naghizadeh, Behrooz Vahidi and Seyed Hossein Hosseinian

The purpose of this paper is to implement a simple, fast and accurate heuristic method for parameter determination of Jiles‐Atherton (JA) hysteresis model for representing…

Abstract

Purpose

The purpose of this paper is to implement a simple, fast and accurate heuristic method for parameter determination of Jiles‐Atherton (JA) hysteresis model for representing magnetization in electrical steel sheets. The performance of the method is validated using measured data and comparison with previous methods.

Design/methodology/approach

JA model requires five parameters to represent the hysteretic behavior of ferromagnetic materials. In order to determine these parameters, measured hysteresis loop is used here to calculate a fitness function which is defined by comparing the measured and simulated magnetization loops. This fitness function is minimized by optimization algorithms.

Findings

In total, four different measured hysteresis loops are studied in this paper. Each optimization algorithm is executed 50 times to investigate the convergence, speed, and accuracy of six methods. All methods begin with the same randomly generated initial parameters. Physical boundaries are used for parameters to avoid unaccepted results. Thorough examination of results shows that the proposed method is more appropriate than previously implemented methods for the parameter determination of Jiles‐Atherton model in all studied cases. The required parameters for each optimization method are also presented.

Originality/value

Shuffled frog leaping algorithm (SFLA) is implemented for the first time for JA model parameter determination. The results show that SFLA is faster and more accurate in comparison with other methods. Furthermore, this algorithm is easy to implement and tune.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 July 2020

Seyed Mohsen Hosseinian, Ali Mostafazade Abolmaali and Hossein Afshin

Spiral-wound heat exchangers (SWHEs) are widely used in different industries. In special applications, such as cryogenic (HEs), fluid properties may significantly depend on fluid…

Abstract

Purpose

Spiral-wound heat exchangers (SWHEs) are widely used in different industries. In special applications, such as cryogenic (HEs), fluid properties may significantly depend on fluid temperature. This paper aims to present an analytical method for design and rating of SWHEs considering variable fluid properties with consistent shell geometry and single-phase fluid.

Design/methodology/approach

To consider variations of fluid properties, the HE is divided into identical segments, and the fluid properties are assumed to be constant in each segment. Validation of the analytical method is accomplished by using three-dimensional numerical simulation with shear stress transport k-ω model, and the numerical model is verified by using the experimental data. Moreover, the HE cost is selected as the main criterion in obtaining the proper design, and the most affordable geometry is selected as the proper design.

Findings

The accuracy of different heat transfer and pressure drop correlations is investigated by comparing the analytical and numerical results. The average errors in the calculation of effectiveness, shell-side pressure drop and tube-side pressure drop using the analytical method are 2.1%, 13.9% and 13.3%, respectively. Moreover, the effect of five main geometrical parameters on the SWHE cost is investigated. The results indicate that the effect of longitudinal pitch ratio on the SWHE cost can be neglected, whereas other geometrical parameters have a significant impact on the total cost of the SWHE.

Originality/value

This work contains a versatile and low-cost analytical method to design and rating the SWHEs considering the variable fluid property with consistent shell geometry. The previous studies have introduced complex methods and have not considered the consistency of shell geometry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 5 of 5