Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 13 July 2017

Patrick Bamonte, Pietro G. Gambarova, Nataša Kalaba and Sergio Tattoni

This study aims to provide a factual justification of the extension to fire conditions of the well-known design models for the calculations of R/C members at the ultimate limit…

155

Abstract

Purpose

This study aims to provide a factual justification of the extension to fire conditions of the well-known design models for the calculations of R/C members at the ultimate limit state in shear and torsion. Both solid and thin-walled sections are considered. In the latter case, the little-known topic of shear-transfer mechanisms at high temperature is introduced and discussed.

Design/methodology/approach

Both the effective-section method and the zone method are treated, as well as the strut-and-tie models required by the analysis of the so-called D zones (discontinuity zones), where heat-enhanced cracking further bears out the phenomenological basis of the models.

Findings

The increasing role played by the stirrups in shear and by the rather cold concrete core in torsion stand out clearly in fire, while high temperatures rapidly reduce the contributions of such resisting mechanisms as concrete-teeth bending, aggregate interlock and dowel action.

Originality/value

On the whole, beside quantifying the side contributions of web mechanisms and section core in fire conditions, this study indicates a possible approach to extend to fire the available models on the coupling of shear and bending, and shear and torsion in R/C members.

Details

Journal of Structural Fire Engineering, vol. 9 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 1 of 1
Per page
102050