Search results
1 – 2 of 2Sebastian Rulik, Włodzimierz Wróblewski, Krzysztof Rusin and Krzysztof Rogoziński
This paper aims to determine the influence of geometrical features of the channel on the acoustic wave generation in a ducted cavity. The analysis is focussed on the effects of…
Abstract
Purpose
This paper aims to determine the influence of geometrical features of the channel on the acoustic wave generation in a ducted cavity. The analysis is focussed on the effects of the change in the entrance length upstream the cavity and the height. The study is supposed to investigate boundary layer and acoustic wave parameters, and an attempt will be made to determine the correlation between the geometrical dimension and those parameters.
Design/methodology/approach
Analysis is conducted with the aim of a computational fluid dynamics (CFD) tool and selected results are validated with experimental investigations. The influence of grid resolution and time discretization is analysed. Four different entrance lengths and height are investigated. Qualitative and quantitative comparison between cases is presented.
Findings
The investigations prove the small influence of the entrance length on acoustic wave generation, but channel height due to wave reflection and interference inside of the cavity has a significant impact on wave frequency and sound pressure level. Channel height has also impact on generation and shape of the vortex created in the cavity inlet.
Originality/value
The paper extends the knowledge of phenomena taking place in the ducted cavities. Results obtained from these investigations will be useful in designing new cooling techniques and in noise reduction. The CFD analysis makes it possible to determine the correlations between channel dimensions and SPL function and frequency of sound waves.
Details
Keywords
Mohammadsadegh Pahlavanzadeh, Sebastian Rulik, Włodzimierz Wróblewski and Krzysztof Rusin
The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface…
Abstract
Purpose
The performance of a bladeless Tesla turbine is closely tied to momentum diffusion, kinetic energy transfer and wall shear stress generation on its rotating disks. The surface roughness adds complexity of flow analysis in such a domain. This paper aims to assess the effect of roughness on flow structures and the application of roughness models in flow cross sections with submillimeter height, including both stationary and rotating walls.
Design/methodology/approach
This research starts with the examination of flow over a rough flat plate, and then proceeds to study flow within minichannels, evaluating the effect of roughness on flow characteristics. An in-house test stand validates the numerical solutions of minichannel. Finally, flow through the minichannel with corotating walls was analyzed. The k-ω SST turbulent model and Aupoix's roughness method are used for numerical simulations.
Findings
The findings emphasize the necessity of considering the constricted dimensions of the flow cross section, thereby improving the alignment of derived results with theoretical estimations. Moreover, this study explores the effects of roughness on flow characteristics within the minichannel with stationary and rotating walls, offering valuable insights into this intricate phenomenon, and depicts the appropriate performance of chosen roughness model in studied cases.
Originality/value
The originality of this investigation is the assessment and validation of flow characteristics inside minichannel with stationary and corotating walls when the roughness is implemented. This phenomenon, along with the effect of roughness on the transportation of kinetic energy to the rough surface of a minichannel in an in-house test setup, is assessed.
Details