Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 3 April 2018

Davood Darvishi Salookolaei, Sifeng Liu and Sayed Hadi Nasseri

The purpose of this paper is to discuss the animal diet problem in grey environment which is adapted to the real situations. In particular, a new approach to solve these problems…

144

Abstract

Purpose

The purpose of this paper is to discuss the animal diet problem in grey environment which is adapted to the real situations. In particular, a new approach to solve these problems is proposed.

Design/methodology/approach

With the objective to produce the least-cost diet, in the traditional model for optimizing the diet problem, the price of foods, the nutrients requirements and the necessity of foods requirement have been considered as grey interval numbers. Grey linear programming approach has been employed to solve the grey diet problem. Grey linear programming with flexibility in selection of the coefficients can be more effective for solving the diet problems. In this research, only the positioned method has been used. The grey diet model is solved by using GAMS software based on the positioned method.

Findings

The main contribution of this work is to introduce a new model in the practical case that is concerned with diet problem under a kind of uncertainty environment and furthermore, proposing a novel method to solve the formulated problem. In this way, using a grey model and applying all restrictions, the least cost for one kilogram of total mixed ration was 6,893-10,163 Rials, and at this level, cow’s nutrient requirement was met. Based on the numerical examination, which was done on the real case, the achieved results have showed that the uncertainty of foods requirement and nutrients requirements had slight effect on the animal budget diet.

Originality/value

This problem must be viewed from another perspective because of the uncertainty regarding the amount of nutrients per unit of foods and the diversity of animals’ daily needs to receive them. In particular, a new method to optimize the fully mixed diet of lactating cows in early lactation that are readily available in the northeast of Iran in uncertainty environment has been proposed.

Details

Grey Systems: Theory and Application, vol. 8 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Access Restricted. View access options
Article
Publication date: 5 May 2020

Davood Darvishi Salookolaei and Seyed Hadi Nasseri

For extending the common definitions and concepts of grey system theory to the optimization subject, a dual problem is proposed for the primal grey linear programming problem.

250

Abstract

Purpose

For extending the common definitions and concepts of grey system theory to the optimization subject, a dual problem is proposed for the primal grey linear programming problem.

Design/methodology/approach

The authors discuss the solution concepts of primal and dual of grey linear programming problems without converting them to classical linear programming problems. A numerical example is provided to illustrate the theory developed.

Findings

By using arithmetic operations between interval grey numbers, the authors prove the complementary slackness theorem for grey linear programming problem and the associated dual problem.

Originality/value

Complementary slackness theorem for grey linear programming is first presented and proven. After that, a dual simplex method in grey environment is introduced and then some useful concepts are presented.

Details

Grey Systems: Theory and Application, vol. 10 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Access Restricted. View access options
Article
Publication date: 8 July 2024

A.M. Mohamad, Dhananjay Yadav, Mukesh Kumar Awasthi, Ravi Ragoju, Krishnendu Bhattacharyya and Amit Mahajan

The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study…

34

Abstract

Purpose

The purpose of the study is to analytically as well as numerically investigate the weight of throughflow on the onset of Casson nanofluid layer in a permeable matrix. This study examines both the marginal and over stable kind of convective movement in the system.

Design/methodology/approach

A double-phase model is used for Casson nanofluid, which integrates the impacts of thermophoresis and Brownian wave, whereas for flow in the porous matrix the altered Darcy model is occupied under the statement that nanoparticle flux is disappear on the boundaries. The resultant eigenvalue problem is resolved analytically as well as numerically with the help of Galerkin process with the Casson nanofluid Rayleigh–Darcy number as the eigenvalue.

Findings

The findings revealed that the throughflow factor postpones the arrival of convective flow and reduces the extent of convective cells, whereas the Casson factor, the Casson nanoparticle Rayleigh–Darcy number and the reformed diffusivity ratio promote convective motion and also decrease the extent of convective cells.

Originality/value

Controlling the convective movement in heat transfer systems that generate high heat flux is a real mechanical challenge. The proposed framework proved that the use of throughflow is one of the most important ways to control the convective movement in Casson nanofluid. To the best of the authors’ knowledge, no inspection has been established in the literature that studies the outcome of throughflow on the Casson nanofluid convective flow in a porous medium layer. However, the convective flow of Casson nanofluid finds many applications in improving heat transmission and energy efficiency in a range of thermal systems, such as the cooling of heat-generating elements in electronic devices, heat exchangers, pharmaceutical practices and hybrid-powered engines, where throughflow can play a significant role in controlling the convective motion.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 3 of 3
Per page
102050