Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 26 June 2019

P.K. Kapur, Saurabh Panwar and Ompal Singh

This paper aims to develop a parsimonious and innovative model that captures the dynamics of new product diffusion in the recent high-technology markets and thus assist both…

316

Abstract

Purpose

This paper aims to develop a parsimonious and innovative model that captures the dynamics of new product diffusion in the recent high-technology markets and thus assist both academicians and practitioners who are eager to understand the diffusion phenomena. Accordingly, this study develops a novel diffusion model to forecast the demand by centering on the dynamic state of the product’s adoption rate. The proposed study also integrates the consumer’s psychological point of view on price change and goodwill of the innovation in the diffusion process.

Design/methodology/approach

In this study, a two-dimensional distribution function has been derived using Cobb–Douglas’s production function to combine the effect of price change and continuation time (goodwill) of the technology in the market. Focused on the realistic scenario of sales growth, the model also assimilates the time-to-time variation in the adoption rate (hazard rate) of the innovation owing to companies changing marketing and pricing strategies. The time-instance upon which the adoption rate alters is termed as change-point.

Findings

For validation purpose, the developed model is fitted on the actual sales and price data set of dynamic random access memory (DRAM) semiconductors, liquid crystal display (LCD) monitors and room air-conditioners using non-linear least squares estimation procedure. The results indicate that the proposed model has better forecasting efficiency than the conventional diffusion models.

Research limitations/implications

The developed model is intrinsically restricted to a single generation diffusion process. However, technological innovations appear in generations. Therefore, this study also yields additional plausible directions for future analysis by extending the diffusion process in a multi-generational environment.

Practical implications

This study aims to assist marketing managers in determining the long-term performance of the technology innovation and examine the influence of fluctuating price on product demand. Besides, it also incorporates the dynamic tendency of adoption rate in modeling the diffusion process of technological innovations. This will support the managers in understanding the practical implications of different marketing and promotional strategies on the adoption rate.

Originality/value

This is the first attempt to study the value-based diffusion model that includes key interactions between goodwill of the innovation, price dynamics and change-point for anticipating the sales behavior of technological products.

Details

Journal of Modelling in Management, vol. 14 no. 3
Type: Research Article
ISSN: 1746-5664

Keywords

Access Restricted. View access options
Article
Publication date: 25 November 2021

Saurabh Panwar, Vivek Kumar, P.K. Kapur and Ompal Singh

Software testing is needed to produce extremely reliable software products. A crucial decision problem that the software developer encounters is to ascertain when to terminate the…

247

Abstract

Purpose

Software testing is needed to produce extremely reliable software products. A crucial decision problem that the software developer encounters is to ascertain when to terminate the testing process and when to release the software system in the market. With the growing need to deliver quality software, the critical assessment of reliability, cost of testing and release time strategy is requisite for project managers. This study seeks to examine the reliability of the software system by proposing a generalized testing coverage-based software reliability growth model (SRGM) that incorporates the effect of testing efforts and change point. Moreover, the strategic software time-to-market policy based on costreliability criteria is suggested.

Design/methodology/approach

The fault detection process is modeled as a composite function of testing coverage, testing efforts and the continuation time of the testing process. Also, to assimilate factual scenarios, the current research exhibits the influence of software users refer as reporters in the fault detection process. Thus, this study models the reliability growth phenomenon by integrating the number of reporters and the number of instructions executed in the field environment. Besides, it is presumed that the managers release the software early to capture maximum market share and continue the testing process for an added period in the user environment. The multiattribute utility theory (MAUT) is applied to solve the optimization model with release time and testing termination time as two decision variables.

Findings

The practical applicability and performance of the proposed methodology are demonstrated through real-life software failure data. The findings of the empirical analysis have shown the superiority of the present study as compared to conventional approaches.

Originality/value

This study is the first attempt to assimilate testing coverage phenomenon in joint optimization of software time to market and testing duration.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Access Restricted. View access options
Article
Publication date: 27 June 2020

Fuli Zhou, Panpan Ma, Yandong He, Saurabh Pratap, Peng Yu and Biyu Yang

With an increasingly fierce competition of the shipbuilding industry, advanced technologies and excellent management philosophies in the manufacturing industry are gradually…

427

Abstract

Purpose

With an increasingly fierce competition of the shipbuilding industry, advanced technologies and excellent management philosophies in the manufacturing industry are gradually introduced to domestic shipyards. The purpose of this study is to promote the lean management of Chinese ship outfitting plants by lean production strategy.

Design/methodology/approach

To promote the lean implementation of Chinese shipyards, the lean practice of ship-pipe part production is highlighted by lot-sizing optimization and strategic CONWIP (constant work-in-process) control. A nonlinear programming model is formulated to minimize the total cost of ship-pipe part manufacturing and the particle swarm optimization (PSO)-based algorithm is designed to resolve the established model. Besides, the pull-from-the-bottleneck (PFB) strategy is used to control ship-pipe part production, verified by Simulink simulation.

Findings

Results show that the proposed lean strategy of the programming model and strategic PFB control could assist Chinese ship outfitting plants to leverage competitive advantage by waste reduction and lean achievement. Specifically, the PFB double-loop control strategy shows better performance when there is high productivity and the PFB single-loop control outperforms at lower productivity scenarios.

Practical implications

To verify the effectiveness of the proposed lean strategy, a case study is performed to validate the formulated model. Also, simulation experiments realized by FlexSim software are conducted to testify results obtained by the constructed programming model.

Originality/value

Lean production management practice of the shipyard building industry is performed by the proposed lean production strategy through lot-sizing optimization and strategic PFB control in terms of ship-pipe part manufacturing.

Details

Kybernetes, vol. 50 no. 5
Type: Research Article
ISSN: 0368-492X

Keywords

Access Restricted. View access options
Article
Publication date: 16 December 2021

Bishwajit Nayak, Som Sekhar Bhattacharyya, Saurabh Kumar and Rohan Kumar Jumnani

The purpose of this study is to identify the major factors influencing the adoption of health-care wearables in generation Z (Gen Z) customers in India. A conceptual framework…

1047

Abstract

Purpose

The purpose of this study is to identify the major factors influencing the adoption of health-care wearables in generation Z (Gen Z) customers in India. A conceptual framework using push pull and mooring (PPM) adoption theory was developed.

Design/methodology/approach

Data was collected from 208 Gen Z customers based on 5 constructs related to the adoption of health-care wearables. Confirmatory factor analysis and structural equation modelling was used to analyse the responses. The mediation paths were analysed using bootstrapping method and examination of the standardized direct and indirect effects in the model.

Findings

The study results indicated that the antecedent factors consisted of push (real-time health information availability), pull (normative environment) and mooring (decision self-efficacy) factors. The mooring factor (MOOR) was related to the push factor but not the pull factor. The MOOR, in turn, was related to the switching intention of Gen Z customers for health wearables adoption.

Research limitations/implications

The research study extended the literature related to the PPM theory in the context of the adoption of health wearables among Gen Z customers in India.

Practical implications

The study outcome would enable managers working in health wearable organizations to understand consumer behaviour towards health wearables.

Social implications

The use of health wearables among Gen Z individuals would lead to future generations adopting a healthy lifestyle resulting in an effective workforce and better economy.

Originality/value

This was one of the few studies which have explored the PPM theory to explore the factors for the adoption of health wearables among Gen Z customers in India.

Details

Journal of Information, Communication and Ethics in Society, vol. 20 no. 1
Type: Research Article
ISSN: 1477-996X

Keywords

1 – 4 of 4
Per page
102050