Satanu Ghosh and Kun Lu
The purpose of this paper is to present a preliminary work on extracting band gap information of materials from academic papers. With increasing demand for renewable energy, band…
Abstract
Purpose
The purpose of this paper is to present a preliminary work on extracting band gap information of materials from academic papers. With increasing demand for renewable energy, band gap information will help material scientists design and implement novel photovoltaic (PV) cells.
Design/methodology/approach
The authors collected 1.44 million titles and abstracts of scholarly articles related to materials science, and then filtered the collection to 11,939 articles that potentially contain relevant information about materials and their band gap values. ChemDataExtractor was extended to extract information about PV materials and their band gap information. Evaluation was performed on randomly sampled information records of 415 papers.
Findings
The findings of this study show that the current system is able to correctly extract information for 51.32% articles, with partially correct extraction for 36.62% articles and incorrect for 12.04%. The authors have also identified the errors belonging to three main categories pertaining to chemical entity identification, band gap information and interdependency resolution. Future work will focus on addressing these errors to improve the performance of the system.
Originality/value
The authors did not find any literature to date on band gap information extraction from academic text using automated methods. This work is unique and original. Band gap information is of importance to materials scientists in applications such as solar cells, light emitting diodes and laser diodes.