Karl P. Davidson and Sarat B. Singamneni
This paper aims to establish the microstructures and the process-structure relationships in duplex stainless steel powders consolidated by selective laser melting (SLM).
Abstract
Purpose
This paper aims to establish the microstructures and the process-structure relationships in duplex stainless steel powders consolidated by selective laser melting (SLM).
Design/methodology/approach
A priori data on energy density levels most appropriate to consolidation of duplex stainless steel powders through SLM served as the basis to converge on the laser settings. Experimental designs with varying laser power and scan speeds and test pieces generated allowed metallographic evaluations based on optical and scanning electron microscopy and electro backscatter diffraction analyses.
Findings
Duplex stainless steel powders are established for processing by SLM. However, the dynamic point heat source and associated transient thermal fields affect the microstructures to be predominantly ferritic, with grains elongated in the build direction. Austenite precipitated either at the grain boundaries or as Widmanstätten laths, whereas the crystallographic orientations and the grain growth are affected around the cavities. Considerable CrN precipitation is also evidenced.
Originality/value
Duplex stainless steels are relatively new candidates to be brought into the additive manufacturing realm. Considering the poor machinability and other difficulties, the overarching result indicating suitability of duplex powders by SLM is of considerable value to the industry. More significantly, the metallographic evaluation and results of the current research allowed further understanding of the material consolidation aspects and pave ways for fine tuning and establishment of the process-structure-property relationships for this important process-material combination.
Bin Huang and Sarat B Singamneni
This paper aims to develop a new slicing method for fused deposition modelling (FDM), the curved layer adaptive slicing (CLAS), combining adaptive flat layer and curved layer…
Abstract
Purpose
This paper aims to develop a new slicing method for fused deposition modelling (FDM), the curved layer adaptive slicing (CLAS), combining adaptive flat layer and curved layer slicing together.
Design/methodology/approach
This research begins with a review of current curved layer and adaptive slicing algorithms employed in the FDM and further improvement of the same, where possible. The two approaches are then integrated to develop the adaptive curved layer slicing based on the three-plane intersection method for curved layer offsetting and consideration of facet angles together with the residual heights for adaptive slicing. A practical implementation showed that curved layer adaptive layers respond in similar lines to the flat layer counterparts in terms of the mechanical behaviour of FDM parts.
Findings
CLAS is effective in capturing sharply varying surface profiles and other finer part details, apart from imparting fibre continuity. Three-point bending tests on light curved parts made of curved layers of varying thicknesses prove thicker curved layers to result in better mechanical properties.
Research limitations/implications
The algorithms developed in this research can handle relatively simple shapes to develop adaptive curved slices, but further developments are necessary for more complex shapes. The test facilities also need further improvements, to be able to programmatically implement adaptive curved layer slicing over a wide range of thicknesses.
Practical implications
When fully developed and implemented, CLAS will allow for better FDM part construction with lesser build times.
Originality/value
This research fills a gap in terms of integrating both curved layer and adaptive slicing techniques to better slice and build a part of given geometry using FDM.
Details
Keywords
Yashpal Patel, Aashish Kshattriya, Sarat B Singamneni and A. Roy Choudhury
Layered manufacturing with curved layers is a recently proposed rapid prototyping (RP) strategy for the manufacture of curved, thin and shell-type parts and the repair of worn…
Abstract
Purpose
Layered manufacturing with curved layers is a recently proposed rapid prototyping (RP) strategy for the manufacture of curved, thin and shell-type parts and the repair of worn surfaces, etc. The present investigation indicates another possible application area. In case of flat-layered RP of computer-aided design models having randomly located, small-dimensioned but critical surface features, adaptive slicing is resorted to. Large number of thin slices have to be employed to preserve the critical features. In contrast, a considerably lower number of curved thin slices would be required to preserve such surface features in case of RP with curved layers.
Design/methodology/approach
The method of preservation of critical features by RP with curved layers is formulated and demonstrated for two clusters of critical features on the surface of a part. A minimum number of such curved layers is identified by application of genetic algorithms (GAs) in case of a simple example. GA evolves the shape of the curved layer passing through the lower cluster so as to make a curved layer pass through the upper cluster of critical features.
Findings
In the example part, a 21 per cent reduction in the number of layers is achieved by the application of adaptive curved layers over adaptive straight layers.
Originality/value
The novelty of the concept is the proposed use of curved layered RP with adaptive slicing for the preservation of critical features in final prototyped part. This methodology, applied to part with two distinct clusters, leads to reduced number of layers compared to that obtained in flat-layered RP.
Details
Keywords
Danna Tang, Yushen Wang, Zheng Li, Yan Li and Liang Hao
The low-temperature sintering of silica glass combined with additive manufacturing (AM) technology has brought a revolutionary change in glass manufacturing. This study aims to…
Abstract
Purpose
The low-temperature sintering of silica glass combined with additive manufacturing (AM) technology has brought a revolutionary change in glass manufacturing. This study aims to carry out in an attempt to achieve precious manufacturing of silicate glassy matrix through the method of slurry extrusion.
Design/methodology/approach
A low-cost slurry extrusion modelling technology is used to extrude silicate glassy matrix inks, composed of silicate glass powder with different amounts of additives. Extrudability of the inks, their printability window and the featuring curves of silicate glassy matrix are investigated. In addition, the properties of the low-temperature sintering green part as a functional part are explored and evaluated from morphology, hardness and colour.
Findings
The results showed that the particle size was mainly distributed from 1.4 µm to 5.3 µm, showing better slurry stability and print continuity. The parameters were set to 8 mm/s, 80% and 0.4 mm, respectively, to achieve better forming of three-dimensional (3D) samples. Besides, the organic binder removal step was concentrated on 200°C–300°C and 590°C–650°C was the fusion bonding temperature of the powder. The hardness values of 10 test samples ranged from 588 HL to 613 HL, which met the requirements of hard stones with super-strong mechanical strength. In addition, the mutual penetration of elements caused by temperature changes may lead to a colourful appearance.
Originality/value
The custom continuous AM technology enables the fabrication of a glass matrix with 3D structural features. The precise positioning technology of the glass matrix is expected to be applied more widely in functional parts.