Search results
1 – 2 of 2Sanyam Sharma, Chimata Murali Krishna and Rajesh Singh
This paper aims to evaluate the theoretical performance of elliptical dam bearing (EDB). The objective of this paper is to study the influence of eccentricity ratio, dam…
Abstract
Purpose
This paper aims to evaluate the theoretical performance of elliptical dam bearing (EDB). The objective of this paper is to study the influence of eccentricity ratio, dam parameters and micropolarity parameters on the stability of EDB with respect to micropolar lubrication.
Design/methodology/approach
In this study, the modified Reynolds’ equation for dynamic state is solved using the finite element method and Galerkin technique. A MATLAB code is written to compute pressure and stability and also to analyse the characteristics. The stability parameters of an EDB are computed for selected values of eccentricity ratios at four levels in the range of 0.20 to 0.35 and for length-diameter ratio of 2.0.
Findings
The results from stability analysis reveal that micropolar lubricated EDB provides better stability at smaller material length due to increased effective viscosity. Hence, it is better to select the smaller characteristic length and higher dam width to achieve optimum performance of these bearings.
Originality/value
Very few researchers investigated the effects of working eccentricity, bearing dam and micropolar fluid parameters on the EDB in the past. It is important to study these aspects for optimum performance of bearings.
Details
Keywords
This study aims to investigate the stability performance of partial journal bearings of 120° and 180° partial angles with micropolar lubricant.
Abstract
Purpose
This study aims to investigate the stability performance of partial journal bearings of 120° and 180° partial angles with micropolar lubricant.
Design/methodology/approach
To investigate the stability characteristics of partial journal bearing, a MATLAB source code is written. To solve the Reynolds’ equation, the finite element method is used. Stability performances of 120° and 180° partial journal bearings are computed for a wide range of non-dimensional micropolar fluid parameters and working eccentricities.
Findings
The presented results provide design data for stability parameters in terms of equivalent stiffness, whirl frequency ratio, critical mass and threshold speed of the rotor with respect to eccentricities and material size of the lubricant. The stability of 180° partial journal bearing is found to be higher than 120° partial journal bearing.
Originality/value
In open literature, it is rare to find the stability of a partial journal bearing lubricated with micropolar fluid. Very few researchers have studied the combined effect of eccentricities and micropolar lubricant parameters on the dynamic performance of such bearings. Hence, it is important to study the dynamic stability to explore the complete investigation of the performance of partial journal bearings with micropolar fluid.
Details