Santosh Bopche and Sandeep Lamba
This paper aims to present experimental work examining the effect of opening size on the collection efficiency of cavity-type receiver geometries, e.g. modified cavity and…
Abstract
Purpose
This paper aims to present experimental work examining the effect of opening size on the collection efficiency of cavity-type receiver geometries, e.g. modified cavity and spherical cavity with single- as well as dual-stage water heating. The correlations, obtained using the experimentally obtained data, are helpful in designing of cavity receivers (modified and spherical geometry type) to be used in solar-power harnessing assignments/projects, for yielding better system performance.
Design/methodology/approach
The parameters of study encompass receiver opening or aperture ratios (d/D, ratio of diameter of opening to the maximum diameter of spherical cavity) of 0.4, 0.47, 0.533 and 0.6; flow Reynolds numbers of 938, 1,175, 1,525 and 1,880 with water as a coolant; and receiver inclination angles of 90, 60, 45 and 30° (with 90° as receiver-opening facing downward and 30° as receiver-aperture facing closer to sideway). A modified cavity receiver was examined for opening ratios of 0.46, 0.6, 0.7 and 0.93. The glass covers, with thickness 2, 4 and 6 mm, were positioned at the opening of cavity to mitigate the energy losses.
Findings
The experiments have been conducted at a lesser incoming radiative heat flux, for receiver cavity wall surface temperatures ranging from 90°C to 180°C. The collection efficiency values of both the receivers, modified cavity and spherical cavity types, are seen increasing with coolant flow rate and receiver tilt (inclination) angles, i.e. 30° → 90°. The collection efficiency exhibits maxima at an opening ratio of 0.533 in case of both single- and double-stage spherical cavity receiver. This value was observed as 0.6 for modified cavity receiver. The mathematical correlations developed for obtaining the collection efficiency values of modified cavity-type receiver, spherical cavity receiver with single stage and spherical cavity receiver with dual-stage water heating are given as
Social implications
The findings of the paper may be helpful in erecting concentrating solar collector systems for household water heating, concentrating solar-based power generation as well as for various agricultural applications.
Originality/value
The experimental investigations are fewer in the literature examining the combined geometrical influence on the efficiency of cavity receivers with single- and double-stage water heating provisions.
Details
Keywords
Varinder Kumar and Santosh Bopche
This paper aims to present the numerical models and experimental outcomes pertain to the performance of the parabolic dish concentrator system with a modified cavity-type receiver…
Abstract
Purpose
This paper aims to present the numerical models and experimental outcomes pertain to the performance of the parabolic dish concentrator system with a modified cavity-type receiver (hemispherical-shaped).
Design/methodology/approach
The numerical models were evolved based on two types of boundary conditions; isothermal receiver surface and non-isothermal receiver surface. For validation of the numerical models with experimental results, three statistical terms were used: mean of absolute deviation, R2 and root mean square error.
Findings
The thermal efficiency of the receiver values obtained using the numerical model with a non-isothermal receiver surface found agreeing well with experimental results. The numerical model with non-isothermal surface boundary condition exhibited more accurate results as compared to that with isothermal surface boundary condition. The receiver heat loss analysis based on the experimental outcomes is also carried out to estimate the contributions of various modes of heat transfer. The losses by radiation, convection and conduction contribute about 27.47%, 70.89% and 1.83%, in the total receiver loss, respectively.
Practical implications
An empirical correlation based on experimental data is also presented to anticipate the effect of studied parameters on the receiver collection efficiency. The anticipations may help to adopt the technology for practical use.
Social implications
The developed models would help to design and anticipating the performance of the dish concentrator system with a modified cavity receiver that may be used for applications e.g. power generation, water heating, air-conditioning, solar cooking, solar drying, energy storage, etc.
Originality/value
The originality of this manuscript comprising presenting a differential-mathematical analysis/modeling of hemispherical shaped modified cavity receiver with non-uniform surface temperature boundary condition. It can estimate the variation of temperature of heat transfer fluid (water) along with the receiver height, by taking into account the receiver cavity losses by means of radiation and convection modes. The model also considers the radiative heat exchange among the internal ring-surface elements of the cavity.