Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 5 March 2021

Mayank Kumar Jha, Yogesh Mani Tripathi and Sanku Dey

The purpose of this article is to derive inference for multicomponent reliability where stress-strength variables follow unit generalized Rayleigh (GR) distributions with common…

325

Abstract

Purpose

The purpose of this article is to derive inference for multicomponent reliability where stress-strength variables follow unit generalized Rayleigh (GR) distributions with common scale parameter.

Design/methodology/approach

The authors derive inference for the unknown parametric function using classical and Bayesian approaches. In sequel, (weighted) least square (LS) and maximum product of spacing methods are used to estimate the reliability. Bootstrapping is also considered for this purpose. Bayesian inference is derived under gamma prior distributions. In consequence credible intervals are constructed. For the known common scale, unbiased estimator is obtained and is compared with the corresponding exact Bayes estimate.

Findings

Different point and interval estimators of the reliability are examined using Monte Carlo simulations for different sample sizes. In summary, the authors observe that Bayes estimators obtained using gamma prior distributions perform well compared to the other studied estimators. The average length (AL) of highest posterior density (HPD) interval remains shorter than other proposed intervals. Further coverage probabilities of all the intervals are reasonably satisfactory. A data analysis is also presented in support of studied estimation methods. It is noted that proposed methods work good for the considered estimation problem.

Originality/value

In the literature various probability distributions which are often analyzed in life test studies are mostly unbounded in nature, that is, their support of positive probabilities lie in infinite interval. This class of distributions includes generalized exponential, Burr family, gamma, lognormal and Weibull models, among others. In many situations the authors need to analyze data which lie in bounded interval like average height of individual, survival time from a disease, income per-capita etc. Thus use of probability models with support on finite intervals becomes inevitable. The authors have investigated stress-strength reliability based on unit GR distribution. Useful comments are obtained based on the numerical study.

Details

International Journal of Quality & Reliability Management, vol. 38 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Access Restricted. View access options
Article
Publication date: 6 February 2019

Sanku Dey and Fernando Antonio Moala

The purpose of this paper is to deal with the Bayesian and non-Bayesian estimation methods of multicomponent stress-strength reliability by assuming the Chen distribution.

275

Abstract

Purpose

The purpose of this paper is to deal with the Bayesian and non-Bayesian estimation methods of multicomponent stress-strength reliability by assuming the Chen distribution.

Design/methodology/approach

The reliability of a multicomponent stress-strength system is obtained by the maximum likelihood (MLE) and Bayesian methods and the results are compared by using MCMC technique for both small and large samples.

Findings

The simulation study shows that Bayes estimates based on γ prior with absence of prior information performs little better than the MLE with regard to both biases and mean squared errors. The Bayes credible intervals for reliability are also shorter length with competitive coverage percentages than the condence intervals. Further, the coverage probability is quite close to the nominal value in all sets of parameters when both sample sizes n and m increases.

Originality/value

The lifetime distributions used in reliability analysis as exponential, γ, lognormal and Weibull only exhibit monotonically increasing, decreasing or constant hazard rates. However, in many applications in reliability and survival analysis, the most realistic hazard rate is bathtub-shaped found in the Chen distribution. Therefore, the authors have studied the multicomponent stress-strength reliability under the Chen distribution by comparing the MLE and Bayes estimators.

Details

International Journal of Quality & Reliability Management, vol. 36 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Access Restricted. View access options
Article
Publication date: 3 January 2020

Mayank Kumar Jha, Sanku Dey and Yogesh Mani Tripathi

The purpose of this paper is to estimate the multicomponent reliability by assuming the unit-Gompertz (UG) distribution. Both stress and strength are assumed to have an UG…

275

Abstract

Purpose

The purpose of this paper is to estimate the multicomponent reliability by assuming the unit-Gompertz (UG) distribution. Both stress and strength are assumed to have an UG distribution with common scale parameter.

Design/methodology/approach

The reliability of a multicomponent stress–strength system is obtained by the maximum likelihood (MLE) and Bayesian method of estimation. Bayes estimates of system reliability are obtained by using Lindley’s approximation and Metropolis–Hastings (M–H) algorithm methods when all the parameters are unknown. The highest posterior density credible interval is obtained by using M–H algorithm method. Besides, uniformly minimum variance unbiased estimator and exact Bayes estimates of system reliability have been obtained when the common scale parameter is known and the results are compared for both small and large samples.

Findings

Based on the simulation results, the authors observe that Bayes method provides better estimation results as compared to MLE. Proposed asymptotic and HPD intervals show satisfactory coverage probabilities. However, average length of HPD intervals tends to remain shorter than the corresponding asymptotic interval. Overall the authors have observed that better estimates of the reliability may be achieved when the common scale parameter is known.

Originality/value

Most of the lifetime distributions used in reliability analysis, such as exponential, Lindley, gamma, lognormal, Weibull and Chen, only exhibit constant, monotonically increasing, decreasing and bathtub-shaped hazard rates. However, in many applications in reliability and survival analysis, the most realistic hazard rates are upside-down bathtub and bathtub-shaped, which are found in the unit-Gompertz distribution. Furthermore, when reliability is measured as percentage or ratio, it is important to have models defined on the unit interval in order to have plausible results. Therefore, the authors have studied the multicomponent stress–strength reliability under the unit-Gompertz distribution by comparing the MLEs, Bayes estimators and UMVUEs.

Details

International Journal of Quality & Reliability Management, vol. 37 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Access Restricted. View access options
Book part
Publication date: 4 April 2024

Ramin Rostamkhani and Thurasamy Ramayah

This chapter of the book seeks to use famous mathematical functions (statistical distribution functions) in evaluating and analyzing supply chain network data related to supply…

Abstract

This chapter of the book seeks to use famous mathematical functions (statistical distribution functions) in evaluating and analyzing supply chain network data related to supply chain management (SCM) elements in organizations. In other words, the main purpose of this chapter is to find the best-fitted statistical distribution functions for SCM data. Explaining how to best fit the statistical distribution function along with the explanation of all possible aspects of a function for selected components of SCM from this chapter will make a significant attraction for production and services experts who will lead their organization to the path of competitive excellence. The main core of the chapter is the reliability values related to the reliability function calculated by the relevant chart and extracting other information based on other aspects of statistical distribution functions such as probability density, cumulative distribution, and failure function. This chapter of the book will turn readers into professional users of statistical distribution functions in mathematics for analyzing supply chain element data.

Details

The Integrated Application of Effective Approaches in Supply Chain Networks
Type: Book
ISBN: 978-1-83549-631-2

Keywords

1 – 4 of 4
Per page
102050