Sang-Do Choi, Tae-Soo Eum, Eun Taek Shin and Chang Geun Song
Complicated motion of vortex is frequently observed in the wake of islands. These kinds of swirling fluid cause the trap of sediments or pollutants, subsequently inducing the dead…
Abstract
Purpose
Complicated motion of vortex is frequently observed in the wake of islands. These kinds of swirling fluid cause the trap of sediments or pollutants, subsequently inducing the dead zone, odor or poor water quality. Therefore, the understanding of flow past a circular cylinder is significant in predicting water quality and positioning the immersed structures. This study aims to investigate the flow properties around a structure using Navier-slip boundary conditions.
Design/methodology/approach
Boundary conditions are a major factor affecting the flow pattern because the magnitude of flow detachment on a surface can redistribute the tangential stress on the wall. Therefore, the authors performed an analysis of laminar flow passing through a circular structure to investigate the effect of boundary conditions on the flow pattern.
Findings
The authors examined the relationship between the partial-slip boundary conditions and the flow behavior at low Reynolds number past a circular cylinder considering velocity and vorticity distributions behind the cylinder, lift coefficient and Strouhal number. The amplitude of lift coefficient by the partial slip condition had relatively small value compared with that of no-slip condition, as the wall shear stress acting on the cylinder became smaller by the velocity along the cylinder surface. The frequency of the asymmetrical vortex formation with partial slip velocity was increased compared with no-slip case due to the intrinsic inertial effect of Navier-slip condition.
Originality/value
The ability to engineer slip could have dramatic influences on flow, as the viscous dominated motion can lead to large pressure drops and large axial dispersion. By the slip length control, no-slip, partial-slip and free-slip boundary conditions are tunable, and the velocity distributions at the wall, vortex formation and wake pattern including the amplitude of lift coefficient and frequency were significantly affected by slip length parameter.
Details
Keywords
Hyoung Seok Kang, Sang Do Noh, Ji Yeon Son, Hyun Kim, Jun Hee Park and Ju Yeon Lee
In this paper, a three-dimensional (3D) printer-based manufacturing line and supporting system, which supports personalized/customized manufacturing for individual businesses or…
Abstract
Purpose
In this paper, a three-dimensional (3D) printer-based manufacturing line and supporting system, which supports personalized/customized manufacturing for individual businesses or start-up companies, was studied to evaluate the practicality of using additive manufacturing for personalization/mass customization.
Design/methodology/approach
First, factory-as-a-service (FaaS) system, which provides factory as a service to customers, was proposed and designed to manufacture various products within a distributed manufacturing environment. This system includes 3D printer-based material extrusion processes, vapor machine/computer numerical control machines as post-processes and assembly and inspection processes with an automated material handling robot in the factory. Second, a virtualization module for the FaaS factory was developed using a simulation model interfaced with a cloud-based order and production-planning system and an internet-of-things-based control and monitoring system. This is part of the system for manufacturing operations, which is capable of dynamic scheduling in a distributed manufacturing environment. In addition, simulation-based virtual production was conducted to verify and evaluate the FaaS factory for the target production scenario. Main information of the simulation also has been identified and included in the virtualization module. Finally, the established system was applied in a sample production scenario to evaluate its practicality and efficiency.
Findings
Additive manufacturing is a reliable, feasible and applicable technology, and it can be a core element in smart manufacturing and the realization of personalization/mass customization.
Originality/value
Various studies on additive manufacturing have been conducted with regard to replacing the existing manufacturing methods or integrating with them, but these studies mostly focused on materials or types of additive manufacturing, with few advanced or applied studies on the establishment of a new manufacturing environment for personalization/mass customization.