San-Yih Hwang, Chih-Ping Wei, Chien-Hsiang Lee and Yu-Siang Chen
The information needs of the users of literature database systems often come from the task at hand, which is short term and can be represented as a small number of articles…
Abstract
Purpose
The information needs of the users of literature database systems often come from the task at hand, which is short term and can be represented as a small number of articles. Previous works on recommending articles to satisfy users’ short-term interests have utilized article content, usage logs, and more recently, coauthorship networks. The usefulness of coauthorship has been demonstrated by some research works, which, however, tend to adopt a simple coauthorship network that records only the strength of coauthorships. The purpose of this paper is to enhance the effectiveness of coauthorship-based recommendation by incorporating scholars’ collaboration topics into the coauthorship network.
Design/methodology/approach
The authors propose a latent Dirichlet allocation (LDA)-coauthorship-network-based method that integrates topic information into the links of the coauthorship networks using LDA, and a task-focused technique is developed for recommending literature articles.
Findings
The experimental results using information systems journal articles show that the proposed method is more effective than the previous coauthorship network-based method over all scenarios examined. The authors further develop a hybrid method that combines the results of content-based and LDA-coauthorship-network-based recommendations. The resulting hybrid method achieves greater or comparable recommendation effectiveness under all scenarios when compared to the content-based method.
Originality/value
This paper makes two contributions. The authors first show that topic model is indeed useful and can be incorporated into the construction of coaurthoship-network to improve literature recommendation. The authors subsequently demonstrate that coauthorship-network-based and content-based recommendations are complementary in their hit article rank distributions, and then devise a hybrid recommendation method to further improve the effectiveness of literature recommendation.
Details
Keywords
San‐Yih Hwang, Wen‐Chiang Hsiung and Wan‐Shiou Yang
This article describes a service for providing literature recommendations, which is part of a networked digital library project whose principal goal is to develop technologies for…
Abstract
This article describes a service for providing literature recommendations, which is part of a networked digital library project whose principal goal is to develop technologies for supporting digital services. The proposed literature recommendation system makes use of the Web usage logs of a literature digital library. The recommendation framework consists of three sequential steps: data preparation of the Web usage log, discovery of article associations, and article recommendations. We discuss several design alternatives for conducting these steps. These alternatives are evaluated using the Web logs of our university’s electronic thesis and dissertation (ETD) system. The proposed literature recommendation system has been incorporated into our university’s ETD system, and is currently operational.
Details
Keywords
San‐Yih Hwang and Shi‐Min Chuang
In a large‐scale digital library, it is essential to recommend a small number of useful and related articles to users. In this paper, a literature recommendation framework for…
Abstract
In a large‐scale digital library, it is essential to recommend a small number of useful and related articles to users. In this paper, a literature recommendation framework for digital libraries is proposed that dynamically provides recommendations to an active user when browsing a new article. This framework extends our previous work that considers only Web usage data by utilizing content information of articles when making recommendations. Methods that make use of pure content data, pure Web usage data, and both content and usage data are developed and compared using the data collected from our university's electronic thesis and dissertation (ETD) system. The experimental results demonstrate that content data and usage data are complements of each other and hybrid methods that take into account of both types of information tend to achieve more accurate recommendations.