Assia Boughaba, Salah Aberkane, Youcef-Oussama Fourar and Mébarek Djebabra
For many years, the concept of safety culture has attracted researchers from all over the world, and more particularly in the area of healthcare services. The purpose of this…
Abstract
Purpose
For many years, the concept of safety culture has attracted researchers from all over the world, and more particularly in the area of healthcare services. The purpose of this paper is to measure safety culture dimensions in order to improve and promote healthcare in Algeria.
Design/methodology/approach
The used approach consists of getting a better understanding of healthcare safety culture (HSC) by measuring the perception of healthcare professionals in order to guide promotion actions. For this, the Hospital Survey on Patient Safety Culture questionnaire was used in a pilot hospital setting where it was distributed on a number of 114 health professionals chosen by stratified random sampling.
Findings
The results showed that the identified priority areas for HSC improvement help in establishing a trust culture and a non-punitive environment based on the system and not on the individual.
Originality/value
Safety is recognized as a key aspect of service quality, thus measuring the HSC can help establish an improvement plan. In Algerian health facilities, this study is considered the first to examine perceptions in this particular area. The current results provide a baseline of strengths and opportunities for healthcare safety improvement, allowing the managers of this type of facilities to take steps that are more effective.
Details
Keywords
Samrat Hansda and Swapan K. Pandit
This paper aims to study the impact of convexity and concavity of the vertical borders on double-diffusive mixed convection. In addition, the study of entropy generation is…
Abstract
Purpose
This paper aims to study the impact of convexity and concavity of the vertical borders on double-diffusive mixed convection. In addition, the study of entropy generation is performed. This numerical study has been carried out for different patterns of wavy edges to reveal their effects on heat and mass transfer phenomena.
Design/methodology/approach
Four different flow features are treated by varying the directions of convexity and concavity of the vertical walls. A uniform temperature, as well as concentration distributions, are introduced to the left border while keeping a cold temperature and low concentration for the right border. The horizontal boundaries are in adiabatic condition. The upper border of the chamber is moving in the right direction with an equal speed. The governing Navies–Stokes equations are designed to describe energy and species transport phenomena, and these equations are solved by compact scheme.
Findings
The investigated results are analyzed for various parameters, namely, Prandtl number, Richardson number, thermal Grashof number, Lewis number, Buoyancy ratio and amplitude of the wavy walls. It is observed that the thermal and solutal transfer performance becomes effective with lower Richardson numbers. The results reveal that the concavity and convexity of the side borders of the cabinet can control the thermosolutal performance. It is also observed that among all wavy chambers, Case-4 records maximum thermosolutal transfer rate, while Case-3 attains minimum thermosolutal transfer rate.
Originality/value
This work is an example of solar thermal power conversion, power collection systems, systems of energy deficiency, etc.