Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 June 2005

Joachim Schöberl and Sabine Zaglmayr

The goal of the presented work is the efficient computation of Maxwell boundary and eigenvalue problems using high order H(curl) finite elements.

1278

Abstract

Purpose

The goal of the presented work is the efficient computation of Maxwell boundary and eigenvalue problems using high order H(curl) finite elements.

Design/methodology/approach

Discusses a systematic strategy for the realization of arbitrary order hierarchic H(curl)‐conforming finite elements for triangular and tetrahedral element geometries. The shape functions are classified as lowest order Nédélec, higher‐order edge‐based, face‐based (only in 3D) and element‐based ones.

Findings

Our new shape functions provide not only the global complete sequence property but also local complete sequence properties for each edge‐, face‐, and element‐block. This local property allows an arbitrary variable choice of the polynomial degree for each edge, face, and element. A second advantage of this construction is that simple block‐diagonal preconditioning gets efficient. Our high order shape functions contain gradient shape functions explicitly. In the case of a magnetostatic boundary value problem, the gradient basis functions can be skipped, which reduces the problem size, and improves the condition number.

Originality/value

Successfully applies the new high order elements for a 3D magnetostatic boundary value problem, and a Maxwell eigenvalue problem showing severe edge and corner singularities.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1
Per page
102050