Elena V. Chepelyuk, Valeriy V. Choogin, David Hui and Yuri M. Strzhemechny
This paper describes a new approach for the design of multilayer reinforcements of textile composite materials and products. We offer an alternative to multilayer complex fabrics…
Abstract
This paper describes a new approach for the design of multilayer reinforcements of textile composite materials and products. We offer an alternative to multilayer complex fabrics for which the laminates of the composite reinforcement material consist of orthogonal woven fabrics with an original variable structure when each fabric layer is composed of alternating one‐ply (one warp and one weft) and one and‐ a‐half‐ply (one warp and two wefts) sections. Combination of these sections produces a “gearing” effect, preventing the delamination of textile composites in the process of their exploitation. An important aspect of the proposed method is a possibility to design woven fabrics in concurrence with the dimensions of the composite product and conditions of its exploitation; this leads to a substantial improvement of many properties of such composite product.
Details
Keywords
B. Verleye, G. Morren, S.V. Lomov, H. Sol, I. Verpoest and D. Roose
For simulating the injection stage of the manufacturing process of composite materials, the permeability of the textile is an important input parameter. The permeability of…
Abstract
For simulating the injection stage of the manufacturing process of composite materials, the permeability of the textile is an important input parameter. The permeability of textiles can be determined experimentally.
However, this is a time and resource consuming process and no standard procedure is yet available. In this paper, we will present a user-friendly software package to simulate the flow through a textile model and predict the permeability
Results are presented for a woven fabric and two different non-crimp fabrics. The computed permeability values are compared with experimental results.
Details
Keywords
Proposes an algorithm for the computation of maximum needle penetration force; it introduces the direct dependence of penetration force on fabric structural parameters and warp…
Abstract
Proposes an algorithm for the computation of maximum needle penetration force; it introduces the direct dependence of penetration force on fabric structural parameters and warp and weft geometrical and mechanical properties. Uses the approach to the simulation of local deformation of woven material which accounts for the thread resistance to crimp change and friction forces when the thread is shifted from its original position in the fabric structure as the result of its interaction with a needle. The resistance of threads to tension caused by a needle pushing them from their straight‐line paths is also accounted for. The resulting formulae give the dependence of needle penetration force for a plain‐woven fabric on the following parameters: needle diameter and surface angle; warp and weft spacing, dimensions, crimp height and bending rigidity; friction coefficients thread‐thread and thread‐needle. For a non‐plain‐woven fabric the linear dependence of penetration force on the fabric tightness is suggested. The comparison with the published and specially measured penetration force data proves the predictive ability of the model to be qualitatively accurate and quantitatively reasonable.
Details
Keywords
Ezzatollah Haghighat, Saeed Shaikhzadeh Najar, Seyed Mohammad Etrati and Mostafa Shamsi
The purpose of this paper is to theoretically compute and predict the needle penetration force (NPF) in woven denim fabrics with twill 3/1 weave pattern on the basis of…
Abstract
Purpose
The purpose of this paper is to theoretically compute and predict the needle penetration force (NPF) in woven denim fabrics with twill 3/1 weave pattern on the basis of geometrical, physical, and mechanical properties of yarns and fabric, and characteristics of sewing needle.
Design/methodology/approach
To predict the NPF by mathematical relations, the proposed models by Stylios and Xu (1995) and Lomov (1998) are extended for a twill woven structure. The NPF is calculated based on resistance forces due to yarn tensile elongation, yarn resistance to bending in the near of the sewing needle while the needle penetrates into the fabric, friction between weft and warp yarns, needle profile shape, and friction between sewing needle and yarns. In order to evaluate the obtained results, nine different denim fabric samples are produced, and five sewing needles with different sizes are used. The NPF is measured on the Instron tensile tester to simulate sewing process.
Findings
The results show that there is a good relationship between the predicted and experimental values of the NPF (R2=0.831, MSE=0.079, and MAPE=9.51 percent). Moreover, it is found that the performance of developed model to predict the NPF for needle sizes of 80, 90, 100, and 110 (Nm) is better than that of needle size of 120 (Nm). Generally, the developed theoretical model can predict the NPF in fabrics with twill 3/1 weave pattern.
Originality/value
The fabrics with twill weave pattern have a complicated structure than plain pattern. So, in this research work, the NPF of denim fabric with twill 3/1 weave pattern was theoretically predicted on the basis of yarn elongation, changing of yarn bent shape in the near of the sewing needle, and friction between warp and weft yarns. The NPF was measured in the successive cycle loading conditions similar to sewing machine process by using a designed and constructed instrument, which is mounted on the Instron tensile tester.
Details
Keywords
S.V. Lomov, B.M. Primachenko and N.N. Truevtzev
Presents general properties and examples of weaves for two‐component multilayered woven fabrics. Such fabrics have a combination of properties which it is difficult to achieve in…
Abstract
Presents general properties and examples of weaves for two‐component multilayered woven fabrics. Such fabrics have a combination of properties which it is difficult to achieve in traditional fabrics (bulk combined with good tenacity, high cover level with porosity), can be used in liningless garments and can cope with ergonomical restrictions when using fibres with special protective properties. Describes a CAD system which can be used as an aid for a technologist to choose yarns for warp and weft, fabric weave and picks/ends count to meet demands specified by a particular fabric usage. It employs a new method of coding of multilayered fabric structure; mathematical methods used are based on the mechanical model of yarns interaction in a fabric. This describes the spatial disposition of yarns which allows production of any desired images of fabric geometry, i.e. surface smoothness or shape of pores. Discusses the complex nature of porosity of multilayered fabrics.
Details
Keywords
Esmaeil Salahshoor and Saeed Ebrahimi
The purpose of this paper is to investigate the effect of joint clearance on the behavior of a needle driver mechanism (a slider-crank linkage) of a typical sewing machine with an…
Abstract
Purpose
The purpose of this paper is to investigate the effect of joint clearance on the behavior of a needle driver mechanism (a slider-crank linkage) of a typical sewing machine with an imperfect joint between the coupler and the slider (including needle).
Design/methodology/approach
In order to model the clearance, the momentum exchange approach is used. The Lankarani and Nikravesh’s continuous contact force model is used to model the contact force, and the modified Coulomb’s friction law represents the friction between sliding members. The penetration force applied on the needle by fabric is chosen based on an experimental data in the literature. The dynamic response is validated for the existing properties in the literature without considering the penetration force.
Findings
It is shown that the clearance joint made considerable effect on the dynamic response of the system. The rough changes of the needle acceleration and jerk are obvious. The base reaction force changed roughly and did not vary as smooth as that of the mechanism with ideal joint. So, clearance joint in the mechanism could lead to an undesirable vibration in the system. Furthermore, the crank driver must provide a non-smooth moment on the crank to keep the crank rotational velocity constant. Moreover, reducing the clearance size sufficiently could make the dynamic response closer to that of the mechanism with ideal joint. In addition, smoother crank moment could be required if the clearance size is reduced sufficiently. Furthermore, the rough change of the base reaction force which can represent the vibration caused by the mechanism on the fixed frame could be reduced if the clearance size is small enough.
Originality/value
Lockstitch sewing machine is one of the most common apparel industrial machines. The needle driver mechanism of a sewing machine could have an important role for proper stitch forming. On the other hand, clearances are inevitable in assemblage of mechanisms to allow the relative motion between the members. This clearance is due to machining tolerances, wear, material deformations, and imperfections, and it can worsen mechanism performance such as precision, dynamic behavior and vibration. Unfortunately, despite the importance of the dynamic behavior of the needle driver mechanism from practical point of view, very little publications have focused especially on the investigation of the effect of clearance joint on the dynamic behavior of the sewing machine which could lead to undesired vibration of the system and shorter lifetime as a result. In this paper, the dynamic behavior of the system including, needle velocity and acceleration, crank moment and base reaction force was compared with that of the ideal mechanism. Finally, the effect of clearance size on the dynamic behavior of the system was investigated.
Details
Keywords
Duc Hai Nguyen, Hu Wang, Fan Ye and Wei Hu
The purpose of this paper is to investigate the mechanical properties’ behaviors of woven composite cut-out structures with specific parameters. Because of the complexity of…
Abstract
Purpose
The purpose of this paper is to investigate the mechanical properties’ behaviors of woven composite cut-out structures with specific parameters. Because of the complexity of micro-scale and meso-scale structure, it is difficult to accurately predict the mechanical material behavior of woven composites. Numerical simulations are increasingly necessary for the design and optimization of test procedures for composite structures made by the woven composite. The results of the proposed method are well satisfied with the results obtained from the experiment and other studies. Moreover, parametric studies on different plates based on the stacking sequences are investigated.
Design/methodology/approach
A multi-scale modeling approach is suggested. Back-propagation neural networks (BPNN), radial basis function (RBF) and least square support vector regression are integrated with efficient global optimization (EGO) to reduce the weight of assigned structure. Optimization results are verified by finite element analysis.
Findings
Compared with other similar studies, the advantage of the suggested strategy uses homogenized properties behaviors with more complex analysis of woven composite structures. According to investigation results, it can be found that 450/−450 ply-orientation is the best buckling load value for all the cut-out shape requirements. According to the optimal results, the BPNN-EGO is the best candidate for the EGO to optimize the woven composite structures.
Originality/value
A multi-scale approach is used to investigate the mechanical properties of a complex woven composite material architecture. Buckling of different cut-out shapes with the same area is surveyed. According to investigation, 45°/−45° ply-orientation is the best for all cut-out shapes. Different surrogate models are integrated in EGO for optimization. The BPNN surrogate model is the best choice for EGO to optimization difficult problems of woven composite materials.
Details
Keywords
C. Cassidy and S.V. Lomov
As CAD fabric modelling becomes more widespread there is a need to study the applicability of fabric property parameters which are used in predicting fabric behaviour. The…
Abstract
As CAD fabric modelling becomes more widespread there is a need to study the applicability of fabric property parameters which are used in predicting fabric behaviour. The anisotropical mechanical behaviour of woven fabrics, fusible interlinings and their composites were studied on order to invesigate the accuracy of equations used to predict the anisotropic linear elastic behaviour of fabric for in plane and bending deformation. Bending, shear and tensile properties were measured using KES©F equipment. Results showed that the orthotropic model of anisotropy can be applied for the qualitative modelling of woven and fusible interlining fabrics and that simple mechanical models for bending properties can be used for their composites.
Details
Keywords
Discusses the 6th ITCRR, its breadth of textile and clothing research activity, plus the encouragement given to workers in this field and its related areas. States that, within…
Abstract
Discusses the 6th ITCRR, its breadth of textile and clothing research activity, plus the encouragement given to workers in this field and its related areas. States that, within the newer research areas under the microscope of the community involved, technical textiles focuses on new, ‘smart’ garments and the initiatives in this field in both the UK and the international community at large. Covers this subject at length.
Details
Keywords
Ezzatollah Haghighat, Seyed Mohammad Etrati, Saeed Shaikhzadeh Najar and Mostafa Shamsi
The purpose of this paper is to theoretically calculate and predict the needle penetration force (NPF) in woven denim fabrics with twill 3/1 weave pattern, based on the…
Abstract
Purpose
The purpose of this paper is to theoretically calculate and predict the needle penetration force (NPF) in woven denim fabrics with twill 3/1 weave pattern, based on the geometrical, physical, and mechanical properties of fabric and constituent weft and warp yarns.
Design/methodology/approach
In order to calculate the NPF by mathematical relations, the suggested model by Stylios and Xu (1995) is extended. While the needle penetrates into the fabric, the NPF is calculated on the basis of yarn tensile elongation, needle profile shape, and friction between needle and yarns. To accurately evaluate the developed model, nine different commercial denim fabric samples with various weft densities and linear density of weft yarns are produced, also five needles with different sizes are utilized. The NPF is measured in the successive cycle loading conditions similar to sewing machine process by using a designed and constructed instrument, which mounted on the Instron tensile tester.
Findings
Comparing the predicted and experimental values indicated that the accuracy of model to predict the NPF is partly acceptable (R2=0.734). To improve the developed model, in addition to the forces which applied on needle due to yarn elongation, the other forces such as friction between weft and warp yarns, and yarn resistance to bending in the near of the sewing needle, which resist against needle penetration, can be considered.
Originality/value
The fabrics with twill weave pattern have a complicated structure than plain pattern, therefore, in this paper the NPF of denim fabrics with twill 3/1 weave pattern were theoretically calculated based on yarn elongation. The spacing between centers of yarns in these fabrics is obtained by deriving a new formula. The NPF is measured on the Instron tensile tester to simulate sewing process.